Основы статистической обработки педагогической информации. Денис Владимирович Соломатин
Чтение книги онлайн.

Читать онлайн книгу Основы статистической обработки педагогической информации - Денис Владимирович Соломатин страница 29

СКАЧАТЬ следующих рекомендаций:

      • Создавать отдельный проект RStudio для каждого аналитического проекта.

      • Хранить файлы данных в папке проекта, для удобной загрузки их в R.

      • Храните там же и скрипты, редактируя их, запуская по частям или целиком.

      • Сохранять там же и выходных данных (графики, очищенные данные).

      • Использовать только относительные пути, а не абсолютные.

      В результате, всё необходимое для работы будет находится в одном месте, изолированном от других проектов.

      §4. Статистический анализ данных

      Эта глава посвящена освоению основных приёмов статистического анализа информации, полученной средствами визуализации и преобразований, при систематическом изучении педагогических данных. Основная задача отдельной дисциплины, называемой «исследовательский анализ данных», заключается в открытии новых характеристик данных, и решается неоднократным повторением следующих трех шагов:

      1) Сформулируйте вопросы о ваших данных.

      2) Ищите ответы с помощью визуализации, преобразований и моделирования.

      3) Используйте обнаруженные закономерности, чтобы уточнить имеющиеся вопросы и сформулировать новые.

      Описанное не является формальным процессом со строгим набором правил, это скорее «состояние ума». Во время первого этапа нужно чувствовать себя свободно, чтобы исследовать каждую идею, что приходить на ум. Некоторые из идей будут реализованы, другие заведут в тупик, но поскольку исследование продолжится, то можно будет сконцентрироваться на нескольких особо продуктивных направлениях, которые в конечном итоге разовьются при общении с другими людьми.

      Визуализация и преобразования являются важной частью любого анализа данных, даже если данные представлены «на блюдечке с голубой каёмочкой», всегда нужно исследовать качество исходных данных. Предварительная подготовка является одним из ключевых этапов. Задайте вопросы о том, соответствуют ли имеющиеся данные ожидаемым или нет. Чтобы выполнить грамотную очистку данных, будут использованы все доступные инструменты: визуализация, преобразование и моделирование.

      Опыт использования пакетов dplyr и ggplot2 в интерактивном режиме для генерации вопросов, поиска ответов, с последующей формулировкой новых вопросов, показывает, что всегда нужно искать хотя бы примерный ответ на один принципиальный вопрос, чем погрузиться в поиски точных ответов на несколько риторических. Основная цель второго этапа состоит лишь в том, чтобы пришло понимание исходных данных. Самый простой способ достижения этого – использовать вопросы как инструменты для руководства к действиям. Когда спрашиваете, вопрос фокусирует внимание на определенной части набора данных и помогает решить, какие графики, модели или преобразования предстоят. Как любое частное приложение ТРИЗ (теории решения изобретательских задач) это в основном творческий процесс. И как у большинства творческих процессов, ключ к тому, чтобы задавать качественные вопросы, СКАЧАТЬ