The Success Equation. Michael J. Mauboussin
Чтение книги онлайн.

Читать онлайн книгу The Success Equation - Michael J. Mauboussin страница 16

Название: The Success Equation

Автор: Michael J. Mauboussin

Издательство: Ingram

Жанр: Экономика

Серия:

isbn: 9781422184240

isbn:

СКАЧАТЬ for part of the season, when the average of all players is .265. You don't really believe that Joe will average .350 forever because even if he's an above-average hitter, he's likely been the beneficiary of good luck recently. You'd like to know what his average will look like over a longer period of time. The best way to estimate that is to reduce his average so that it is closer to .265. The James-Stein estimator includes a factor that tells you how much you need to shrink the .350 while Joe's average is high so that his number more closely resembles his true ability in the long run. Let's go straight to the equation to see how it works:

      Estimated true average = Grand average + shrinking factor (observed average − grand average)

      The estimated true average would represent Joe's true ability. The grand average is the average of all of the players (.265), and the observed average is Joe's average during his period of success (.350). In a classic article on this topic, two statisticians named Bradley Efron and Carl Morris estimated the shrinking factor for batting averages to be approximately .2. (They used data on batting averages from the 1970 season with a relatively small sample, so consider this as illustrative and not definitive.)19 Here is how Joe's average looks using the James-Stein estimator:

      Estimated true average = .265 + .2 (.350 − .265)

      According to this calculation, Joe is most likely going to be batting .282 for most of the season. The equation can also be used for players who have averages below the grand average. For example, the best estimate of true ability for a player who is hitting only .175 for a particular stretch is .247, or .265 + .2 (.175 − .265).

      For activities that are all skill, the shrinking factor is 1.0, which means that the best estimate of the next outcome is the prior outcome. When Marion Tinsley was playing checkers, the best guess about who would win the next game was Marion Tinsley. If you assume that skill is stable in the short term and that luck is not a factor, this is the exact outcome that you would expect.

      For activities that are all luck, the shrinking factor is 0, which means that the expected value of the next outcome is the mean of the distribution of luck. In most American casinos, the mean distribution of luck in the game of roulette is 5.26 percent, the house edge, and no amount of skill can change that. You may win a lot for a while or lose a lot for a while, but if you play long enough, you will lose 5.26 percent of your money. If skill and luck play an equal role, then the shrinking factor is 0.5, halfway between the two. So we can assign a shrinking factor to a given activity according to where that activity lies on the continuum. The closer the activity is to all skill, the closer the factor is to 1. The larger the role that luck plays, the closer the factor is to zero. We will see a specific example of how these shrinking factors correlate with skill in chapter 10.

      The James-Stein estimator can be useful in predicting the outcome of any activity that combines skill and luck. To use one example, the return on invested capital for companies reverts to the mean over time. In this case, the rate of reversion to the mean reflects a combination of a company's competitive position and its industry. Generally speaking, companies that deal in technology (and companies whose products have short life cycles) tend to revert more rapidly to the mean than established companies with stable demand for their well-known consumer products. So Seagate Technology, a maker of hard drives for computers, will experience more rapid reversion to the mean than Procter & Gamble, the maker of the best-selling detergent, Tide, because Seagate has to constantly innovate, and even its winning products have a short shelf life. Put another way, companies that deal in technology have a shrinking factor that is closer to zero.

      Similarly, investing is a very competitive activity, and luck weighs heavily on the outcomes in the short term. So if you are using a money manager's past returns to anticipate her future results, a low shrinkage factor is appropriate. Past performance is no guarantee of future results because there is too much luck involved in investing.

      Understanding the rate of reversion to the mean is essential for good forecasting. The continuum of luck and skill, as our experience with the two jars has shown, provides a practical way to think about that rate and ultimately to measure it.

      So far, I have assumed that the jars contain numbers that follow a normal distribution, but in fact, distributions are rarely normal. Furthermore, the level of skill changes over time, whether you're talking about an athlete, a company, or an investor. But using jars to create a model is a method that can accommodate those different distributions. Chapters 5 and 6 will examine how skill changes over time and what forms luck can take.

      Visualizing luck and skill as a continuum provides a simple concept that can carry a lot of intellectual freight. It allows us to understand when luck can make your level of skill irrelevant, especially in the short term, as we saw with the Playboy Playmates. It allows us to think about extreme performance, as in the cases of Bill Joy and Joe DiMaggio. And makes it possible for us to calibrate the rate of reversion to the mean, as we did with batting averages. Each of these ideas is essential to making intelligent predictions.

      Chapter 4 looks at techniques for placing activities on the continuum. It's time to make the ideas from the continuum operational.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdC IFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAQAA9tYAAQAA AADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFj cHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAA ABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAAD TAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJD AAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5 OCBIZXdsZXR0LVBhY2thcmQgQ29tc
СКАЧАТЬ