Aprendizagem De Máquina Em Ação. Alan T. Norman
Чтение книги онлайн.

Читать онлайн книгу Aprendizagem De Máquina Em Ação - Alan T. Norman страница 1

Название: Aprendizagem De Máquina Em Ação

Автор: Alan T. Norman

Издательство: Tektime S.r.l.s.

Жанр: Программирование

Серия:

isbn: 9788835400585

isbn:

СКАЧАТЬ prendizagem De Máquina Em Ação

Aprendizagem deMáquina em AçãoUma Obra Para o LeigoAlan T. NormanTradutor: Vitor SIlva

      Copyright © 2019 – Alan T. Norman. Todos os Direitos Reservados.

      Nenhuma parte desta publicação pode ser reproduzida, distribuída ou transmitida de qualquer forma ou por qualquer meio, incluindo fotocópia, gravação ou outros métodos eletrónicos ou mecânicos, ou por qualquer sistema de armazenamento e recuperação de informações sem a permissão prévia por escrito do editor, exceto no caso de citações muito breves incorporadas em comentários críticos e em alguns outros usos não comerciais permitidos pela lei de direitos de autor.

      Porque é Que Eu Escrevi Este Livro

      Bem-vindo ao mundo da aprendizagem de máquina!

      A inteligência artificial está pronta para mudar o curso da história humana, talvez mais do que qualquer tecnologia. Uma grande parte dessa revolução é a aprendizagem de máquina.

      A aprendizagem de máquina é a ciência de ensinar computadores a fazer previsões baseado em dados. Num nível básico, a aprendizagem de máquina envolve fornecer ao computador um conjunto de dados e solicitar que ele faça uma previsão. No início, o computador terá muitas previsões erradas. No entanto, ao longo de milhares de previsões, o computador ajustará o seu algoritmo para fazer melhores previsões.

      Este tipo de computação preditiva costumava ser impossível. Os computadores simplesmente não conseguiam armazenar dados suficientes ou processá-los com rapidez suficiente para aprender com eficiência. Agora, a cada ano, os computadores estão a ficar mais inteligentes a um ritmo acelerado. Os avanços no armazenamento de dados e no poder de processamento estão a direcionar essa tendência para máquinas mais inteligentes. Como resultado, os computadores de hoje estão a fazer coisas impensáveis há apenas uma ou duas décadas.

      A aprendizagem de máquina já está a afetar a sua vida diáriamente. A Amazon usa a aprendizagem de máquina para prever quais os produtos que você deseja comprar. O Gmail usa-o para filtrar mensagens de spam da sua caixa de entrada. As suas recomendações de filmes no Netflix são baseadas em algoritmos de aprendizagem de máquina.

      No entanto, os impactos da aprendizagem de máquina não param por aí. Os algoritmos de aprendizagem de máquina estão a fazer previsões em todos os tipos de indústrias, da agricultura à saúde. Além disso, os seus impactos serão sentidos em novas indústrias e formas a cada ano. À medida que essas novas aplicações de aprendizagem de máquina surgirem, gradualmente as aceitaremos como parte da vida normal. No entanto, essa nova dependência de máquinas inteligentes é um ponto de viragem na história da tecnologia, e a tendência está apenas a se acelerar.

      No futuro, a aprendizagem de máquina e a inteligência artificial geralmente impulsionarão a automação de muitas tarefas que os humanos realizam hoje. Os carros autónomos dependem da aprendizagem de máquinas para reconhecimento de imagem e cada vez mais fazem parte do transporte, assim como camiões autónomos e outros veículos para transportar mercadorias. Atualmente, grande parte da agricultura e manufactura é automatizada, de modo a que a aprendizagem de máquina forneça os alimentos que consumimos e os bens que usamos. A tendência para a automação está apenas a se acelerar. Outras aplicações de aprendizagem de máquina podem mudar fundamentalmente os trabalhos que os humanos realizam no dia a dia, à medida que as máquina se tornam mais hábeis no gerenciamento de processos e na conclusão do trabalho de conhecimento.

      Como a aprendizagem de máquina terá um impacto tão profundo na vida quotidiana, é importante que todos tenham acesso a informações sobre como ele funciona. Por isso escrevi este livro. O cenário atual para informações de aprendizagem de máquina é dividido.

      Primeiro, há explicações para o público em geral que deitam abaixo os conceitos. Esses explicadores fazem a aprendizagem de máquina parecer algo que apenas um especialista poderia entender.

      Segundo, existem os documentos técnicos escritos por especialistas para especialistas. Eles excluem o público em geral com gíria e complexidade. Obviamente, escrever e executar um algoritmo de aprendizagem de máquina é um enorme feito técnico, e essas explicações técnicas são importantes. No entanto, há um buraco na literatura atual sobre aprendizagem de máquina.

      E o leigo que realmente quer entender esta revolução tecnológica, não necessariamente para escrever código, mas para entender as mudanças que estão a acontecer ao seu redor? A compreensão dos conceitos principais da aprendizagem de máquina não se deve limitar a uma elite tecnológica. Essas mudanças irão nos afetar a todos. Eles têm consequências éticas e é importante que o público conheça todos os benefícios e desvantagens da aprendizagem de máquina.

      Por isso escrevi este livro. Se isso lhe parece interessante, espero que você goste.

      Este Livro não é sobre a codificação de algoritmos na aprendizagem de máquina

      Se o manifesto de uma introdução não foi suficientemente claro: este não é um livro sobre codificação. Não é para cientistas da computação aprenderem como criar algoritmos de aprendizagem de máquina.

      Por um lado, quase que não estou qualificado para escrever um livro como este. As pessoas passam anos a aprender os meandros da escrita de algoritmos e redes de testes. Existem programas inteiros de doutoramento que exploram as margens do campo, baseando-se em álgebra linear e estatística preditiva. Se você se aprofundar nos detalhes da aprendizagem de máquina e adorar o suficiente para obter um doutoramento, poderá facilmente ganhar US $300 mil a US $600 mil a trabalhar para uma grande empresa de tecnologia. É assim que essas habilidades são raras e valiosas.

      Eu não tenho essas qualificações e acho que é uma coisa boa. Se você comprou este livro, significa que é um iniciante interessado em aprendizagem de máquina. Provavelmente você não é técnico ou, se você fôr, está à procura de um livro básico para começar a usar os conceitos básicos. Como escritor de tecnologia, estou constantemente a aprender sobre tecnologias. Sou estudante de aprendizagem de máquina e lembro-me como é ser iniciante. Eu posso ajudar a explicar os conceitos básicos de maneiras fáceis de entender. Depois de ler este livro, você terá uma sólida compreensão dos princípios básicos que tornarão mais fácil avançar para um livro mais avançado, caso você queira saber mais.

      Dito isso, se você sente que já entende os princípios fundamentais ou deseja realmente um livro que lhe possa ensinar os detalhes básicos de como escrever e testar um algoritmo de aprendizagem de máquina, esse provavelmente não é o livro para si.

      Uma obra para o leigo

      O objetivo real deste livro é ser uma introdução fácil de ler sobre aprendizagem de máquina. O meu objetivo é escrever um livro que qualquer um possa ler, mantendo-se fiel aos princípios da aprendizagem de máquina e não aldrabando os conceitos. Estou confiante na inteligência dos meus leitores e não acho que o livro de um iniciante precise necessariamente sacrificar a complexidade e as nuances. Dito isto, este não é um livro grande, e nem de longe é abrangente. Os interessados no tópico desejam aprofundar-se noutros livros e pesquisas.

      Neste livro, veremos os conceitos e tipos básicos de aprendizagem de máquina. Investigaremos como eles funcionam. Em seguida, exploraremos os problemas dos conjuntos de dados e escreveremos e treinaremos um algoritmo. Por fim, veremos alguns casos de uso do mundo real para aprendizagem de máquina e locais onde a aprendizagem de máquina pode ser usada a seguir.

      Mais uma vez, bem-vindo à aprendizagem de máquina. Vamos mergulhar…

      Capítulo 1. O que é aprendizagem СКАЧАТЬ