Practical Data Analysis with JMP, Third Edition. Robert Carver
Чтение книги онлайн.

Читать онлайн книгу Practical Data Analysis with JMP, Third Edition - Robert Carver страница 3

Название: Practical Data Analysis with JMP, Third Edition

Автор: Robert Carver

Издательство: Ingram

Жанр: Программы

Серия:

isbn: 9781642956122

isbn:

СКАЧАТЬ 11: Inference for a Single Continuous Variable

       Overview

       Conditions for Inference

       Using JMP to Conduct a Significance Test

       What If Conditions Are Not Satisfied?

       Using JMP to Estimate a Population Mean

       Matched Pairs: One Variable, Two Measurements

       Application

       Chapter 12: Chi-Square Tests

       Overview

       Chi-Square Goodness-of-Fit Test

       Inference for Two Categorical Variables

       Contingency Tables Revisited

       Chi-Square Test of Independence

       Application

       Chapter 13: Two-Sample Inference for a Continuous Variable

       Overview

       Conditions for Inference

       Using JMP to Compare Two Means

       Using JMP to Compare Two Variances

       Application

       Chapter 14: Analysis of Variance

       Overview

       What Are We Assuming?

       One-Way ANOVA

       What If Conditions Are Not Satisfied?

       Including a Second Factor with Two-Way ANOVA

       Application

       Chapter 15: Simple Linear Regression Inference

       Overview

       Fitting a Line to Bivariate Continuous Data

       The Simple Regression Model

       What Are We Assuming?

       Interpreting Regression Results

       Application

       Chapter 16: Residuals Analysis and Estimation

       Overview

       Conditions for Least Squares Estimation

       Residuals Analysis

       Estimation

       Application

       Chapter 17: Review of Univariate and Bivariate Inference

       Overview

       Research Context

       One Variable at a Time

       Life Expectancy by Income Group

       Life Expectancy by GDP per Capita

       Conclusion

       Chapter 18: Multiple Regression

       Overview

       The Multiple Regression Model

       Visualizing Multiple Regression

       Fitting a Model

       A More Complex Model

       Residuals Analysis in the Fit Model Platform

       Using a Regression Tree Approach: The Partition Platform

       Collinearity

       Evaluating Alternative Models

       Application

       Chapter 19: Categorical, Curvilinear, and Non-Linear Regression Models

       Overview

       Dichotomous Independent Variables

       Dichotomous Dependent Variable

       Curvilinear and Non-Linear Relationships

       More Non-Linear Functions

       Application

       Chapter 20: Basic Forecasting Techniques

       Overview

       Detecting Patterns Over Time

       Smoothing Methods

       Trend Analysis

       Autoregressive Models

       Application

       Chapter 21: Elements of Experimental Design

       Overview

       Why Experiment?

       Goals of Experimental Design

       Factors, Blocks, and Randomization

       Multi-Factor Experiments and Factorial Designs

       Blocking

       A Design for Main Effects Only

       Definitive Screening Designs

       Non-Linear Response Surface Designs

       СКАЧАТЬ