Название: Модельное мышление. Как анализировать сложные явления с помощью математических моделей
Автор: Скотт Пейдж
Издательство: Манн, Иванов и Фербер (МИФ)
Жанр: Математика
Серия: МИФ Научпоп
isbn: 978-5-00146-867-7
isbn:
Теорема Эрроу (теорема невозможности) – пример того, как логика раскрывает невозможное. Модель рассматривает вопрос о том, приводит ли объединение индивидуальных предпочтений к формированию коллективного предпочтения. Предпочтения представлены в ней в виде упорядоченного списка альтернатив. Применительно к пяти итальянским ресторанам, обозначенным буквами от A до E, эта модель допускает любой из 120 упорядоченных списков. Согласно введенным Эрроу требованиям, общий упорядоченный список должен быть монотонным (если каждый ставит в своем списке A выше B, то же происходит в общем списке), независимым от посторонних альтернатив (если относительный ранг A и B в каждом списке остается неизменным, а ранг других альтернатив меняется, то порядок A и B в общем упорядоченном списке не меняется) и недиктаторским (ни один человек не должен определять общий упорядоченный список альтернатив). Далее Эрроу доказывает, что если разрешены любые предпочтения, то коллективное упорядочение списка может и не существовать[21].
Кроме того, логика раскрывает парадоксы. Применение моделей позволяет продемонстрировать возможность ситуации, когда в каждой подгруппе содержится более высокий процент женщин, чем мужчин, но в общей совокупности наблюдается более высокий процент мужчин. Этот феномен известен как парадокс Симпсона. И он действительно имел место: в 1973 году Калифорнийский университет в Беркли зачислил на большинство факультетов больше студенток, чем студентов. Однако в целом университет принял больше студентов мужского пола. Модели также показывают, что чередование двух проигрышных ставок может обеспечить положительный ожидаемый результат (Парадокс Паррондо); или что включение дополнительной вершины в граф позволяет сократить общую длину ребер, необходимых для соединения всех вершин[22].
Не следует отбрасывать эти примеры как математические новшества. Каждый из них имеет практическое применение: усилия по увеличению численности женщин могут иметь обратный эффект, сочетание проигрышных инвестиций способно обеспечить выигрыш, а общую длину сети электрических линий, трубопроводов, Ethernet-линий или дорог можно сократить путем добавления дополнительных узлов.
Логика также раскрывает математические зависимости. Исходя из аксиом Эвклида, треугольник однозначно определяется любыми двумя углами и стороной или любыми двумя сторонами и углом. Стандартные предположения о поведении потребителей и компаний позволяют сделать вывод, что на рынках с большим количеством конкурентов цена равна предельным издержкам. Некоторые результаты оказываются неожиданными, как в случае парадокса дружбы, который гласит, что в любой сети СКАЧАТЬ
21
См. Arrow, 1963. Общий упорядоченный список альтернатив возможен при ограничении индивидуальных списков предпочтений. Например, если бы у каждого человека был один и тот же список предпочтений, то существовал бы и общий список. В целом у нас нет способа преобразовать индивидуальный список предпочтений в согласованный общий список.
22
Лучшие умы моего поколения, несомненно, заметили, что я позаимствовал фразу «это действительно было» из поэмы Howl («Вопль»). См. Bickel, Hammel, and O’Connell, 1975.
На представленном ниже рисунке показан один из множества примеров того, как включение дополнительной вершины приводит к сокращению общей длины ребер графа. На графе слева четыре вершины соответствуют углам квадрата, а на графе справа добавлена пятая вершина в центре. Если длина стороны квадрата равна 1, общая длина ребер левого графа равна 3, а общая длина ребер правого графа равна 4 × 0,71, что меньше 3.
Парадокс Симпсона возникает, когда заявления на факультеты с более высоким процентом зачисления подает больше абитуриентов женского пола, чем мужского. Например, рассмотрим университет, в котором есть медицинская и ветеринарная школы. Предположим, в медицинскую школу подают заявления 900 абитуриентов мужского пола, и 480 (или 53 процента) из них зачисляются, и 300 абитуриентов женского пола, и 180 (или 60 процентов) из них зачисляются, а в ветеринарную школу подают заявления 100 абитуриентов мужского пола, и 20 (или 20 процентов) из них зачисляются, и 300 абитуриентов женского пола, и 90 (или 30 процентов) зачисляются. В каждой школе на обучение принято больше женщин, но в целом зачислено 50 процентов мужчин (500 из 1000) и только 45 процентов женщин (270 из 600).
В качестве примера парадокса Паррондо рассмотрим следующую ситуацию. Предположим, первая ставка всегда проигрывает 1 доллар, а вторая ставка проигрывает 2 доллара в любом периоде, номер которого не делится на три, и выигрывает 3 доллара в периоды 3, 6, 9, 12 и так далее. Каждая ставка обеспечивает ожидаемый проигрыш, но если вы будете делать вторую ставку только в те периоды, когда она выигрывает, а первую ставку – в остальные периоды, то будете выигрывать по 1 доллару каждые три периода.