Programmable Logic Controllers. Su Chen Jonathon Lin
Чтение книги онлайн.

Читать онлайн книгу Programmable Logic Controllers - Su Chen Jonathon Lin страница 26

Название: Programmable Logic Controllers

Автор: Su Chen Jonathon Lin

Издательство: Ingram

Жанр: Физика

Серия:

isbn: 9780831193690

isbn:

СКАЧАТЬ 5.1.1Postulate 1

       If A is not 1, then A shall be 0; and if A is not 0, then A has the value of 1.

      If A ≠ 1, then A = 0

      If A ≠ 0, then A = 1

       5.1.2Postulate 2

      The result of the OR logic with a 0 or 1 follows the rules shown in Table 5.1.

       5.1.3Postulate 3

      The result of the AND logic with a 0 or a 1 follows the rules shown in Table 5.2.

      Table 5.1: OR Logic with a 0 or a 1

image

      Table 5.2: AND Logic with a 0 or a 1

image

      There are a number of Boolean algebra laws that can be used to simplify the Boolean equations that represent logic circuits. Table 5.3 illustrates seven common Boolean algebra laws.

      Table 5.3: Boolean algebra laws

image image

       5.2.1Commutative Laws

      Commutative laws state that the order of two or more elements are commutative when they have either an AND or an OR relationship. This means that the order of two AND or OR elements does not change the output result. Figure 5.1 shows the commutative AND function of three elements A, B, and C. Figure 5.2 illustrates the commutative OR function of three elements A, B, and C.

image

      Figure 5.1: Commutative AND function

image

      Figure 5.2: Commutative OR function

       5.2.2Associative Laws

      Associative laws indicate that the grouping of elements can change without changing the result, provided that all of the operations between elements are the same relationship, either all ANDs or ORs. This means that the order of the AND or OR elements does not change the output result (Figure 5.3 and Figure 5.4).

image

      Figure 5.3: Associative OR function

image

      Figure 5.4: Associative AND function

       5.2.3Distributive Laws

      The distributive laws allow us to rearrange elements in combinations of AND and OR relationships. Often by rearranging elements, we can combine portions to simplify the circuits. It has two forms: AND-OR and OR-AND. Figure 5.5 shows an example of the distributive law of AND-OR combination, which has the form of:

      A · (B + C) = A · B + A · C

      Figure 5.6 shows an example of using the OR-AND combination of distributive law. The distributive OR-AND function has the following Boolean expression:

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIf IiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7 Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCAUAA9kDASIA AhEBAxEB/8QAHAAAAQUBAQEAAAAAAAAAAAAAAgABAwQFBgcI/8QAWxAAAQMDAgMFBAYECQgIBQAL AQACEQMEIRIxBUFRBhMiYXGBkaHwBxQyscHRI0JS4RUWM1NicnOy8SQ0NTaSk5TCQ1RjdIKi0tMX JSZVs0RkdYNFhGXiJzeF/8QAGgEAAwEBAQEAAAAAAAAAAAAAAAECAwQFBv/EADgRAAICAQQABQEF BwQDAQEBAAABAhEDBBIhMQUTMkFRIhQzUmFxFTRCgaGx8CORwdE1U+Fi8ST/2gAMAwEAAhEDEQA/ ANxv23eqnaM9J2ULY1uH9IqacTPrjfmvEO8cnMmR5KNxgnI8wiAgEjlshqYwTGYzy+c/uQMjcfCf WPVQ
СКАЧАТЬ