A Guide to Convolutional Neural Networks for Computer Vision. Salman Khan
Чтение книги онлайн.

Читать онлайн книгу A Guide to Convolutional Neural Networks for Computer Vision - Salman Khan страница 3

СКАЧАТЬ 3.3.2 Parameter Learning

       3.4 Link with Biological Vision

       3.4.1 Biological Neuron

       3.4.2 Computational Model of a Neuron

       3.4.3 Artificial vs. Biological Neuron

       4 Convolutional Neural Network

       4.1 Introduction

       4.2 Network Layers

       4.2.1 Pre-processing

       4.2.2 Convolutional Layers

       4.2.3 Pooling Layers

       4.2.4 Nonlinearity

       4.2.5 Fully Connected Layers

       4.2.6 Transposed Convolution Layer

       4.2.7 Region of Interest Pooling

       4.2.8 Spatial Pyramid Pooling Layer

       4.2.9 Vector of Locally Aggregated Descriptors Layer

       4.2.10 Spatial Transformer Layer

       4.3 CNN Loss Functions

       4.3.1 Cross-entropy Loss

       4.3.2 SVM Hinge Loss

       4.3.3 Squared Hinge Loss

       4.3.4 Euclidean Loss

       4.3.5 The 1 Error

       4.3.6 Contrastive Loss

       4.3.7 Expectation Loss

       4.3.8 Structural Similarity Measure

       5 CNN Learning

       5.1 Weight Initialization

       5.1.1 Gaussian Random Initialization

       5.1.2 Uniform Random Initialization

       5.1.3 Orthogonal Random Initialization

       5.1.4 Unsupervised Pre-training

       5.1.5 Xavier Initialization

       5.1.6 ReLU Aware Scaled Initialization

       5.1.7 Layer-sequential Unit Variance

       5.1.8 Supervised Pre-training

       5.2 Regularization of CNN

       5.2.1 Data Augmentation

       5.2.2 Dropout

       5.2.3 Drop-connect

       5.2.4 Batch Normalization

       5.2.5 Ensemble Model Averaging

       5.2.6 The 2 Regularization

       5.2.7 The 1 Regularization

       5.2.8 Elastic Net Regularization

       5.2.9 Max-norm Constraints

       5.2.10 Early Stopping

       5.3 Gradient-based CNN Learning

       5.3.1 Batch Gradient Descent

       5.3.2 Stochastic Gradient Descent

       5.3.3 Mini-batch Gradient Descent

       5.4 Neural Network Optimizers

       5.4.1 Momentum

       5.4.2 Nesterov Momentum

       5.4.3 Adaptive Gradient

       5.4.4 Adaptive Delta

       5.4.5 RMSprop

       5.4.6 Adaptive Moment Estimation

       5.5 Gradient Computation in CNNs

       5.5.1 Analytical Differentiation

       5.5.2 Numerical Differentiation

       5.5.3 Symbolic Differentiation

       5.5.4 Automatic Differentiation

       5.6 Understanding CNN through Visualization

       5.6.1 Visualizing Learned Weights

       5.6.2 Visualizing Activations

       5.6.3 Visualizations based on Gradients

       6 Examples of CNN Architectures

       6.1 LeNet

       6.2 AlexNet

       6.3 Network in Network

       6.4 VGGnet

       6.5 GoogleNet

       6.6 ResNet

       6.7 ResNeXt

       6.8 FractalNet

       6.9 DenseNet

       7 Applications of CNNs in Computer Vision

       7.1 Image Classification

       7.1.1 PointNet

       7.2 Object Detection and Localization

       7.2.1 Region-based CNN

       7.2.2 Fast R-CNN

       7.2.3 Regional Proposal Network (RPN)

       7.3 Semantic Segmentation

       СКАЧАТЬ