Mathematical Basics of Motion and Deformation in Computer Graphics. Ken Anjyo
Чтение книги онлайн.

Читать онлайн книгу Mathematical Basics of Motion and Deformation in Computer Graphics - Ken Anjyo страница 6

СКАЧАТЬ alt="Image"/>

      Note that the angle θ ∊ R is not uniquely determined. To be more precise, two matrices and Rθ′ give the same rotation if and only if θθ′ is an integer multiple of 2π. The compositions of two rotations and the inverse of a rotation are again rotations:

      Figure 2.2: 2D rotation.

Image

      Here Image denotes the inverse of . The totality of the rotations in 2D forms a group (also recall the definition of group in Chapter 1). It is denoted by

Image

      We also write as

Image

      where M(2, R) is the set of square matrices of size two, I is the identity matrix, and det is the determinant. The transpose1 of a matrix A is denoted by AT. A matrix AM(2, R) is a rotation matrix if and only if the column vectors u, v ∊ R2 of A form an orthonormal basis and the orientation from u to v is counter-clockwise. This means that a rotation matrix sends any orthonormal basis with the positive orientation to some orthonormal basis with the positive orientation.

      The result of the composition of several rotations in 2D is not affected by the order. This fact comes from the commutativity; Rθ Rθ′ = Rθ′ Rθ. Note that this is never true for 3D or a higher dimensional case.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4RvJRXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUAAAABAAAAYgEbAAUAAAABAAAA agEoAAMAAAABAAIAAAExAAIAAAAeAAAAcgEyAAIAAAAUAAAAkIdpAAQAAAABAAAApAAAANAALcbA AAAnEAAtxsAAACcQQWRvYmUgUGhvdG9zaG9wIENTNiAoV2luZG93cykAMjAxNzowNDoxMiAxMDox MTozNgAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAIz6ADAAQAAAABAAAK2gAAAAAAAAAGAQMAAwAA AAEABgAAARoABQAAAAEAAAEeARsABQAAAAEAAAEmASgAAwAAAAEAA
СКАЧАТЬ