Customizable Computing. Yu-Ting Chen
Чтение книги онлайн.

Читать онлайн книгу Customizable Computing - Yu-Ting Chen страница 2

Название: Customizable Computing

Автор: Yu-Ting Chen

Издательство: Ingram

Жанр: Программы

Серия: Synthesis Lectures on Computer Architecture

isbn: 9781627059640

isbn:

СКАЧАТЬ André Barroso and Urs Hölzle

      2009

      Computer Architecture Techniques for Power-Efficiency

      Stefanos Kaxiras and Margaret Martonosi

      2008

      Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency

      Kunle Olukotun, Lance Hammond, and James Laudon

      2007

      Transactional Memory

      James R. Larus and Ravi Rajwar

      2006

      Quantum Computing for Computer Architects

      Tzvetan S. Metodi and Frederic T. Chong

      2006

      Copyright © 2015 by Morgan & Claypool

      All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher.

      Customizable Computing

      Yu-Ting Chen, Jason Cong, Michael Gill, Glenn Reinman, and Bingjun Xiao

       www.morganclaypool.com

      ISBN: 9781627057677 paperback

      ISBN: 9781627057684 ebook

      DOI 10.2200/S00650ED1V01Y201505CAC033

      A Publication in the Morgan & Claypool Publishers series

       SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

      Lecture #33

      Series Editor: Margaret Martonosi, Princeton University

      Series ISSN

      Print 1935-3235 Electronic 1935-3243

       Customizable Computing

      Yu-Ting Chen, Jason Cong, Michael Gill, Glenn Reinman, and Bingjun Xiao

      University of California, Los Angeles

       SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #33

       ABSTRACT

      Since the end of Dennard scaling in the early 2000s, improving the energy efficiency of computation has been the main concern of the research community and industry. The large energy efficiency gap between general-purpose processors and application-specific integrated circuits (ASICs) motivates the exploration of customizable architectures, where one can adapt the architecture to the workload. In this Synthesis lecture, we present an overview and introduction of the recent developments on energy-efficient customizable architectures, including customizable cores and accelerators, on-chip memory customization, and interconnect optimization. In addition to a discussion of the general techniques and classification of different approaches used in each area, we also highlight and illustrate some of the most successful design examples in each category and discuss their impact on performance and energy efficiency. We hope that this work captures the state-of-the-art research and development on customizable architectures and serves as a useful reference basis for further research, design, and implementation for large-scale deployment in future computing systems.

       KEYWORDS

      accelerator architectures, memory architecture, multiprocessor interconnection, parallel architectures, reconfigurable architectures, memory, green computing

       Contents

       Acknowledgments

       1 Introduction

       2 Road Map

       2.1 Customizable System-On-Chip Design

       2.1.1 Compute Resources

       2.1.2 On-Chip Memory Hierarchy

       2.1.3 Network-On-Chip

       2.2 Software Layer

       3 Customization of Cores

       3.1 Introduction

       3.2 Dynamic Core Scaling and Defeaturing

       3.3 Core Fusion

       3.4 Customized Instruction Set Extensions

       3.4.1 Vector Instructions

       3.4.2 Custom Compute Engines

       3.4.3 Reconfigurable Instruction Sets

       3.4.4 Compiler Support for Custom Instructions

       4 Loosely Coupled Compute Engines

       4.1 Introduction

       4.2 Loosely Coupled Accelerators

       4.2.1 Wire-Speed Processor

       4.2.2 Comparing Hardware and Software LCA Management

       4.2.3 Utilizing LCAs

       4.3 Accelerators using Field Programmable Gate Arrays

       4.4 Coarse-Grain Reconfigurable Arrays

       СКАЧАТЬ