Data-Intensive Text Processing with MapReduce. Jimmy Lin
Чтение книги онлайн.

Читать онлайн книгу Data-Intensive Text Processing with MapReduce - Jimmy Lin страница 12

СКАЧАТЬ

      Synchronization. In general, synchronization refers to the mechanisms by which multiple concurrently running processes “join up”, for example, to share intermediate results or otherwise exchange state information. In MapReduce, synchronization is accomplished by a barrier between the map and reduce phases of processing. Intermediate key-value pairs must be grouped by key, which is accomplished by a large distributed sort involving all the nodes that executed map tasks and all the nodes that will execute reduce tasks. This necessarily involves copying intermediate data over the network, and therefore the process is commonly known as “shuffle and sort”. A MapReduce job with m mappers and r reducers involves up to m × r distinct copy operations, since each mapper may have intermediate output going to every reducer.

      Note that the reduce computation cannot start until all the mappers have finished emitting key-value pairs and all intermediate key-value pairs have been shuffled and sorted, since the execution framework cannot otherwise guarantee that all values associated with the same key have been gathered. This is an important departure from functional programming: in a fold operation, the aggregation function g is a function of the intermediate value and the next item in the list—which means that values can be lazily generated and aggregation can begin as soon as values are available. In contrast, the reducer in MapReduce receives all values associated with the same key at once. However, it is possible to start copying intermediate key-value pairs over the network to the nodes running the reducers as soon as each mapper finishes—this is a common optimization and implemented in Hadoop.

      Error and fault handling. The MapReduce execution framework must accomplish all the tasks above in an environment where errors and faults are the norm, not the exception. Since MapReduce was explicitly designed around low-end commodity servers, the runtime must be especially resilient. In large clusters, disk failures are common [123] and RAM experiences more errors than one might expect [135]. Datacenters suffer from both planned outages (e.g., system maintenance and hardware upgrades) and unexpected outages (e.g., power failure, connectivity loss, etc.).

      And that’s just hardware. No software is bug free—exceptions must be appropriately trapped, logged, and recovered from. Large-data problems have a penchant for uncovering obscure corner cases in code that is otherwise thought to be bug-free. Furthermore, any sufficiently large dataset will contain corrupted data or records that are mangled beyond a programmer’s imagination—resulting in errors that one would never think to check for or trap. The MapReduce execution framework must thrive in this hostile environment.

      We have thus far presented a simplified view of MapReduce. There are two additional elements that complete the programming model: partitioners and combiners.

      Partitioners are responsible for dividing up the intermediate key space and assigning intermediate key-value pairs to reducers. In other words, the partitioner specifies the task to which an intermediate key-value pair must be copied. Within each reducer, keys are processed in sorted order (which is how the “group by” is implemented). The simplest partitioner involves computing the hash value of the key and then taking the mod of that value with the number of reducers. This assigns approximately the same number of keys to each reducer (dependent on the quality of the hash function). Note, however, that the partitioner only considers the key and ignores the value—therefore, a roughly even partitioning of the key space may nevertheless yield large differences in the number of key-values pairs sent to each reducer (since different keys may have different numbers of associated values). This imbalance in the amount of data associated with each key is relatively common in many text processing applications due to the Zipfian distribution of word occurrences.

      Combiners are an optimization in MapReduce that allow for local aggregation before the shuffle and sort phase. We can motivate the need for combiners by considering the word count algorithm in Figure 2.3, which emits a key-value pair for each word in the collection. Furthermore, all these key-value pairs need to be copied across the network, and so the amount of intermediate data will be larger than the input collection itself. This is clearly inefficient. One solution is to perform local aggregation on the output of each mapper, i.e., to compute a local count for a word over all the documents processed by the mapper. With this modification (assuming the maximum amount of local aggregation possible), the number of intermediate key-value pairs will be at most the number of unique words in the collection times the number of mappers (and typically far smaller because each mapper may not encounter every word).

      The combiner in MapReduce supports such an optimization. One can think of combiners as “mini-reducers” that take place on the output of the mappers, prior to the shuffle and sort phase. Each combiner operates in isolation and therefore does not have access to intermediate output from other mappers. The combiner is provided keys and values associated with each key (the same types as the mapper output keys and values). Critically, one cannot assume that a combiner will have the opportunity to process all values associated with the same key. The combiner can emit any number of key-value pairs, but the keys and values must be of the same type as the mapper output (same as the reducer input).12 In cases where an operation is both associative and commutative (e.g., addition or multiplication), reducers can directly serve as combiners. In general, however, reducers and combiners are not interchangeable.

      In many cases, proper use of combiners can spell the difference between an impractical algorithm and an efficient algorithm. This topic will be discussed in Section 3.1, which focuses on various techniques for local aggregation. It suffices to say for now that a combiner can significantly reduce the amount of data that needs to be copied over the network, resulting in much faster algorithms.

      The complete MapReduce model is shown in Figure 2.4. Output of the mappers is processed by the combiners, which perform local aggregation to cut down on the number of intermediate key-value pairs. The partitioner determines which reducer will be responsible for processing a particular key, and the execution framework uses this information to copy the data to the right location during the shuffle and sort phase.13 Therefore, a complete MapReduce job consists of code for the mapper, reducer, combiner, and partitioner, along with job configuration parameters. The execution framework handles everything else.

image

      So far, we have mostly focused on the processing aspect of data-intensive processing, but it is important to recognize that without data, there is nothing to compute on. In high-performance computing (HPC) and many traditional cluster architectures, storage is viewed as a distinct and separate component from computation. Implementations vary widely, but network-attached storage (NAS) and storage area networks (SAN) are common; supercomputers often have dedicated subsystems for handling storage (separate nodes, and often even separate networks). Regardless of the details, the processing cycle remains the same at a high level: the compute nodes fetch input from storage, load the data into memory, process the data, and then write back the results (with perhaps intermediate checkpointing for long-running processes).

      As dataset sizes increase, more compute capacity is required for processing. But as compute capacity grows, the link between the compute nodes and the storage becomes a bottleneck. At that point, one could invest in higher performance but more expensive networks (e.g., 10 gigabit Ethernet) or special-purpose interconnects such as InfiniBand (even more expensive). In most cases, this СКАЧАТЬ