Writings of Charles S. Peirce: A Chronological Edition, Volume 8. Charles S. Peirce
Чтение книги онлайн.

Читать онлайн книгу Writings of Charles S. Peirce: A Chronological Edition, Volume 8 - Charles S. Peirce страница 64

Название: Writings of Charles S. Peirce: A Chronological Edition, Volume 8

Автор: Charles S. Peirce

Издательство: Ingram

Жанр: Философия

Серия:

isbn: 9780253004215

isbn:

СКАЧАТЬ along any straight line would bring one back to his original position, and looking off with an unobstructed view one would see the back of his own head enormously magnified, in which case the sum of the three angles of a triangle exceeds 180° by an amount proportional to the area.

      Which of these three hypotheses is true we know not. The largest triangles we can measure are such as have the earth’s orbit for base, and the distance of a fixed star for altitude. The angular magnitude resulting from subtracting the sum of the two angles at the base of such a triangle from 180° is called the star’s parallax. The parallaxes of only about 40 stars have been measured as yet. Two of them come out negative, that of Arided (α Cycni), a star of magnitude 1½, which is Image, according to C. A. F. Peters, and that of a star of magnitude 7¾, known as Piazzi III 242, which is Image according to R. S. Ball. But these negative parallaxes are undoubtedly to be attributed to errors of observation; for the probable error of such a determination is about Image, and it would be strange indeed if we were to be able to see, as it were, more than half way round space, without being able to see stars with larger negative parallaxes. Indeed, the very fact that of all the parallaxes measured only two come out negative would be a strong argument that the smallest parallaxes really amount to Image, were it not for the reflexion that the publication of other negative parallaxes may have been suppressed. I think we may feel confident that the parallax of the furthest star lies somewhere between Image and Image, and within another century our grandchildren will surely know whether the three angles of a triangle are greater or less than 180°,—that they are exactly that amount is what nobody ever can be justified in concluding. It is true that according to the axioms of geometry the sum of the three angles of a triangle is precisely 180°; but these axioms are now exploded, and geometers confess that they, as geometers, know not the slightest reason for supposing them to be precisely true. They are expressions of our inborn conception of space, and as such are entitled to credit, so far as their truth could have influenced the formation of the mind. But that affords not the slightest reason for supposing them exact.

      Now, metaphysics has always been the ape of mathematics. Geometry suggested the idea of a demonstrative system of absolutely certain philosophical principles; and the ideas of the metaphysicians have at all times been in large part drawn from mathematics. The metaphysical axioms are imitations of the geometrical axioms; and now that the latter have been thrown overboard, without doubt the former will be sent after them. It is evident, for instance, that we can have no reason to think that every phenomenon in all its minutest details is precisely determined by law. That there is an arbitrary element in the universe we see,—namely, its variety. This variety must be attributed to spontaneity in some form.

      Had I more space, I now ought to show how important for philosophy is the mathematical conception of continuity. Most of what is true in Hegel is a darkling glimmer of a conception which the mathematicians had long before made pretty clear, and which recent researches have still further illustrated.

      Among the many principles of Logic which find their application in philosophy, I can here only mention one. Three conceptions are perpetually turning up at every point in every theory of logic, and in the most rounded systems they occur in connection with one another. They are conceptions so very broad and consequently indefinite that they are hard to seize and may be easily overlooked. I call them the conceptions of First, Second, Third. First is the conception of being or existing independent of anything else. Second is the conception of being relative to, the conception of reaction with, something else. Third is the conception of mediation, whereby a first and second are brought into relation. To illustrate these ideas, I will show how they enter into those we have been considering. The origin of things, considered not as leading to anything, but in itself, contains the idea of First, the end of things that of Second, the process mediating between them that of Third. A philosophy which emphasizes the idea of the One, is generally a dualistic philosophy in which the conception of Second receives exaggerated attention; for this One (though of course involving the idea of First) is always the other of a manifold which is not one. The idea of the Many, because variety is arbitrariness and arbitrariness is repudiation of any secondness, has for its principal component the conception of First. In psychology, Feeling is First, Sense of reaction Second, General conception Third, or mediation. In biology, the idea of arbitrary sporting is First, heredity is Second, the process whereby the accidental characters become fixed is Third. Chance is First, Law is Second, the tendency to take habits is Third. Mind is First, Matter is Second, Evolution is Third.

      Such are the materials out of which chiefly a philosophical theory ought to be built, in order to represent the state of knowledge to which the XIXth century has brought us. Without going into other important questions of philosophical architectonic, we can readily foresee what sort of a metaphysics would appropriately be constructed from those conceptions. Like some of the most ancient and some of the most recent speculations it would be a Cosmogonic Philosophy. It would suppose that in the beginning,—infinitely remote,—there was a chaos of unpersonalized feeling, which being without connection or regularity would properly be without existence. This feeling, sporting here and there in pure arbitrariness, would have started the germ of a generalizing tendency. Its other sportings would be evanescent, but this would have a growing virtue. Thus, the tendency to habit would be started; and from this with the other principles of evolution all the regularities of the universe would be evolved. At any time, however, an element of pure chance survives and will remain until the world becomes an absolutely perfect, rational, and symmetrical system in which mind is at last crystallized in the infinitely distant future.

      That idea has been worked out by me with elaboration. It accounts for the main features of the universe as we know it—the characters of time, space, matter, force, gravitation, electricity, etc. It predicts many more things which new observations can alone bring to the test. May some future student go over this ground again, and have the leisure to give his results to the world.

      1. The neo-Darwinian, Weismann, has shown that mortality would almost necessarily result from the action of the Darwinian principle.

      2. A feeling may certainly be compound, but only in virtue of a perception which is not that feeling nor any feeling at all.

       24

      The Doctrine of Necessity Examined

5 November 1891 Morris Library

      In the Monist for January, 1891, I endeavored to show what elementary ideas ought to enter into our view of the universe. I may mention that on those considerations I had already grounded a cosmical theory, and from it had deduced a considerable number of consequences capable of being compared with experience. This comparison is now in progress, but under existing circumstances must occupy many years.

СКАЧАТЬ