Название: В поисках общей теории роста человечества
Автор: Анатолий Васильевич Молчанов
Издательство: ЛитРес: Самиздат
Жанр: Биология
isbn: 978-5-532-06036-4
isbn:
Вторая ошибка вполне логична и заключается в том, что автор подменяет здесь проблему гиперболического роста численности населения Земли на проблему линейной зависимости коэффициента мирового естественного прироста от численности.
Если коэффициент естественного прироста для каждого села, города, страны, региона – един и пропорционален численности населения мира: α = αoN, то сложив эти приросты (dNi = αoN*Ni) по всему земному шару, и вынеся αoN за скобку, получим закон квадратичного роста dN/dt = αoN(N1 +…+ Nn) = αoN2, а проинтегрировав его – гиперболу Фёрстера.
Таким образом, Л.М. Гиндилис одним махом решает все проблемы, связанные с аномальной системностью человечества, над которыми безуспешно бьются все исследователи гиперболического роста. Беда здесь только в том, что такая зависимость коэффициента глобального естественного прироста от численности представляется совершенно невозможной по следующей причине:
В таком случае приходится постулировать единый и синхронно растущий по закону простой пропорции коэффициент прироста для населения всех стран и народов, когда-либо населявших Землю, т. е. растущий пропорционально не численности каждого такого выделенного народа или страны, а мира в целом, что представляется совершенно немыслимым.
Следовательно, вопрос здесь не в том, почему относительный глобальный естественный прирост пропорционален численности населения мира. Это неправильно поставленный вопрос. Само представление о том, что гиперболический рост населения Земли может быть объяснен с помощью причинного степенного закона квадратичного роста является ошибочным.
Рост популяции, выраженный степенным законом или каким-либо другим нелинейным законом, не может быть полностью описан лишь с помощью самого этого закона, т. к. такой закон сам по себе не может объяснить информационную связность растущей популяции, взаимозависимость роста всех ее частей.
Кроме того, рост популяции, происходящий по степенному закону, имеет и свои, специфические, присущие только ему особенности, не позволяющие принять этот закон в качестве причинного закона для описания роста какой-либо реально существовавшей в природе популяции. Перечислим все эти аномальные особенности параболического и гиперболического роста:
1. Оба они имеют особую, выделенную на оси времени точку: момент начала или завершения роста, численность популяции в которой равна нулю для параболического и бесконечности для гиперболического СКАЧАТЬ