Название: Principios del entrenamiento de la fuerza y del acondicionamiento físico NSCA (Color)
Автор: G. Gregory Haff
Издательство: Bookwire
Жанр: Сделай Сам
Серия: Entrenamiento Deportivo
isbn: 9788499107424
isbn:
Control de la glucólisis
En general, hay una estimulación del índice de glucólisis, que aumenta durante acciones intensas de los músculos mediante elevadas concentraciones de ADP, Pi y amoniaco, así como mediante una ligera disminución de pH y AMP (22, 61, 140), todo lo cual son signos de un aumento de la hidrólisis de ATP y de la necesidad de energía. Por el contrario, la glucólisis se inhibe con una presencia considerablemente menor de pH, ATP, CP, citrato y ácidos grasos libres (22), que suelen estar presentes en reposo. (Repárese en que una ligera disminución del pH aumenta la glucólisis, aunque si el pH sigue disminuyendo en grado significativo, inhibe el índice de glucólisis). Sin embargo, hay dos factores más específicos que contribuyen a la regulación de la glucólisis (107), como las concentraciones e índices de recambio de tres enzimas glucolíticas importantes: hexocinasa, PFK y piruvato cinasa. Las tres son enzimas reguladoras de la glucólisis, porque cuentan con importantes puntos de unión alostérica (término que significa ‘otra ubicación’). La regulación alostérica ocurre cuando el producto final de una reacción o serie de reacciones facilitan la regulación del índice de recambio de enzimas clave en las vías metabólicas. Por consiguiente, este proceso también recibe el nombre de regulación del producto final (85) o regulación por retroalimentación (61). La inhibición alostérica ocurre cuando un producto final se une a la enzima reguladora, reduce su índice de recambio y ralentiza la formación de productos finales. En contraste, se produce una activación alostérica cuando un «activador» se une a la enzima y eleva su índice de recambio.
La hexocinasa, que cataliza la fosforilación de glucosa en glucosa-6-fosfato, se somete a inhibición alostérica por la concentración de glucosa-6-fosfato en el sarcoplasma (61). Por tanto, cuanto mayor sea la concentración de glucosa-6-fosfato, más hexocinasa resulta inhibida. Además, la fosforilación de glucosa se confina en la célula de modo que no pueda salir. De forma parecida, la reacción de la PFK (fructosa-6-fosfato → fructosa-1,6-bifosfato) obliga a la célula a metabolizar glucosa en vez de almacenarla en forma de glucógeno. La fosfofructocinasa es el regulador más importante de la glucólisis porque es una reacción catalizada por PFK. El trifosfato de adenosina es un inhibidor alostérico de PFK; por tanto, a medida que se elevan las concentraciones intracelulares de ATP, la actividad de la PFK disminuye y se reduce la conversión de fructosa-6-fosfato en fructosa-1,6-bifosfato; por consiguiente, disminuye la actividad de la vía glucolítica. Sin embargo, el AMP es un activador alostérico de la PFK y un poderoso estimulador de la glucólisis. Por lo demás, el amoniaco producido durante el ejercicio de alta intensidad como resultado de la desaminación de AMP o aminoácidos (remoción del grupo amino de la molécula de aminoácido) también estimula la PFK. La piruvato cinasa cataliza la conversión de fosfoenolpiruvato en piruvato y es la enzima reguladora final. La piruvato cinasa se somete a inhibición alostérica por ATP y acetil-CoA (esta última es un intermediario del ciclo de Krebs) y se activa con elevadas concentraciones de AMP y fructosa-1,6-bifosfato (61).
Umbral de lactato e inicio de la acumulación de lactato en la sangre
Hallazgos recientes sugieren que hay puntos específicos de inflexión en la curva de acumulación de lactato (figura 3.5) a medida que se incrementa la intensidad del ejercicio (39, 98). La intensidad del ejercicio o la intensidad relativa a la que el lactato en sangre inicia un brusco incremento por encima de la concentración basal se ha dado en llamar umbral de lactato (UL) (161). El umbral de lactato representa un aumento significativo de la dependencia en los mecanismos anaeróbicos para la producción de energía con la que cubrir la demanda. El UL mantiene una buena correspondencia con el umbral ventilatorio (punto de inflexión en la relación entre la ventilación y el O2), por lo que a menudo se utiliza como indicador del umbral anaeróbico.
El UL suele comenzar al llegar al 50-60% del consumo máximo de oxígeno en personas no entrenadas y al 70-80% en atletas con entrenamiento aeróbico (29, 52). Se ha documentado un segundo aumento en el índice de acumulación de lactato con intensidades relativas de ejercicio más elevadas. Este segundo punto de inflexión recibe el nombre de comienzo de la acumulación de lactato en sangre (OBLA) y ocurre cuando la concentración de lactato sanguíneo alcanza 4 mmol/L (83, 136, 142). Las inflexiones en la curva de acumulación de lactato tal vez se correspondan con puntos en que se reclutan unidades motoras intermedias y grandes cuando se incrementa la intensidad del ejercicio (92). Las células musculares asociadas con unidades motoras grandes suelen ser fibras tipo II, particularmente aptas para el metabolismo anaeróbico y la producción de lactato.
FIGURA 3.5 Umbral de lactato (UL) y comienzo de la acumulación de lactato en la sangre (OBLA).
Algunos estudios sugieren que el entrenamiento a intensidades próximas o por encima del UL o el OBLA desplaza sus curvas a la derecha (es decir, la acumulación de lactato ocurre más tarde y con mayores intensidades de ejercicio) (39, 43). Este desplazamiento probablemente ocurra debido a cambios en la liberación de hormonas, en particular la liberación reducida de catecolaminas con ejercicio de alta intensidad, y el incremento del contenido mitocondrial, el cual permite una mayor producción de ATP con mecanismos aeróbicos. El desplazamiento permite a los atletas rendir con un mayor porcentaje del consumo máximo de oxígeno sin que haya tanta acumulación de lactato en la sangre (22, 41).
El sistema oxidativo (aeróbico)
El sistema oxidativo, la fuente primaria de ATP en reposo y durante actividades de baja intensidad, emplea sobre todo hidratos de carbono y grasas como sustratos (62). Las proteínas no hacen una contribución importante al total de energía; sin embargo, el uso de proteínas aumenta significativamente durante ayunos prolongados y tandas largas de ejercicio (>90 minutos) (41, 102). En reposo, aproximadamente el 70% del ATP producido deriva de grasas y un 30% de hidratos de carbono. Tras el inicio de la actividad, a medida que aumenta la intensidad del ejercicio, hay un desplazamiento en la preferencia por los sustratos a favor de los hidratos de carbono y en detrimento de las grasas. Durante el ejercicio aeróbico de alta intensidad, casi el 100% de la energía deriva de los hidratos de carbono si su aporte es adecuado, siendo mínimas las aportaciones de grasas y proteínas. No obstante, durante un trabajo prolongado, submáximo y con el lactato en estado estable, hay un cambio gradual en la vuelta a la utilización de grasas, y en un grado mínimo al de las proteínas, como sustratos de energía en detrimento de los hidratos de carbono (22).
Oxidación de la glucosa y el glucógeno
El metabolismo oxidativo de la glucosa sanguínea y el glucógeno muscular comienza con la glucólisis. Si hay oxígeno presente en cantidades suficientes, el producto final de la glucólisis, el piruvato, no se convierte en lactato sino que se transporta a las mitocondrias, donde se convierte en acetil-CoA (una molécula con dos átomos de carbono) que entra en el ciclo de Krebs, también llamado ciclo del ácido cítrico o ciclo del ácido tricarboxílico (7, 61). El ciclo de Krebs es una serie de reacciones que continúan la oxidación del sustrato a partir de la glucólisis y que producen, por cada molécula de glucosa, dos moléculas de ATP indirectamente a partir del guanosín trifosfato (GTP), mediante la fosforilación a nivel del sustrato (figura 3.6).
FIGURA 3.6 Ciclo de Krebs. CoA = coenzima A; FAD2+, FADH, FADH2 = flavín adenín dinucleótido; GDP = guanosín difosfato; GTP = guanosín trifosfato; NAD+, NADH = nicotinamida adenina СКАЧАТЬ