Название: Физика на каждом шагу
Автор: Яков Перельман
Жанр: Учебная литература
isbn: 978-5-17-064875-7, 978-5-271-26970-7
isbn:
Дорога
Телега вместе с кладью весит 500 кг. С какою силой должна тянуть лошадь, чтобы двигать эту телегу?
Конечно, необходимое усилие прежде всего зависит от скорости телеги: чем быстрее надо везти телегу, тем большая сила должна быть к ней приложена. Но это не значит, что самая слабая тяга достаточна для приведения телеги хотя бы в очень медленное движение.
Всем известно, что ребенок, как бы долго он ни тянул тяжело нагруженную телегу, не в силах сдвинуть ее с места. Какая же наименьшая сила необходима, чтобы привести телегу в движение и поддерживать это движение?
Опыт показывает, что необходимое усилие зависит от веса телеги и от состояния дороги. На хорошей асфальтовой мостовой надо тянуть телегу с силой, составляющей всего сотую долю веса телеги; на плохой же булыжной мостовой сила тяги должна составлять около одной тридцатой веса телеги. Поэтому, если вес нагруженной телеги 500 кг, то, чтобы ее везти по ровной асфальтовой дороге, достаточно усилия
500 × 0,01 = 5 кг;
между тем, чтобы везти ту же телегу по ровной булыжной мостовой, потребуется сила примерно втрое больше – 15 кг. Это значит, что на асфальтовой мостовой одна и та же лошадь может везти втрое больший груз, чем на булыжной.
Еще больше свезет та же лошадь на рельсовом пути – в 6 раз больший груз, чем на булыжной мостовой.
Отсюда ясно, какое большое хозяйственное значение имеет исправное состояние дорог в стране: хорошая дорога дает большую экономию сил.
Самой экономной дорогой является вода, даже тогда, когда мы не пользуемся ее течением.
Две монеты
Вы подняли вверх на одинаковую высоту две монеты – копеечную и пятикопеечную – и одновременно выпустили их из рук. Какая раньше ударится о пол? Монеты падают у вас ребром, легко разрезая воздух, поэтому его сопротивлением вы можете пренебречь.
Принято думать, что тяжелые вещи падают быстрее легких (даже в пустоте). Поэтому на вопрос нашей задачи чаще всего отвечают так, что пятикопеечная монета достигнет пола раньше копеечной. Однако можно, даже и не делая опыта, показать, что этот ответ неверен.
Допустим в самом деле, что тяжелые вещи падают быстрее легких, и посмотрим, куда нас заведет такая мысль. Раз пятикопеечная монета падает быстрее копеечной, то как будут падать эти монеты, если их вместе склеить (например воском)? Вспомните, как вы ходите, когда ведете за руку своего малолетнего братишку: ваша ходьба замедляется медленным движением брата. Точно так же и копеечная монета будет замедлять падение пятикопеечной, и склеенные монеты должны падать медленнее, чем пятикопеечная сама по себе.
Что же получается? Шесть копеек падают медленнее пяти, тяжелая вещь медленнее легкой! СКАЧАТЬ