Название: Наука о данных
Автор: Брендан Тирни
Издательство: Альпина Диджитал
Жанр: Базы данных
isbn: 978-5-9614-3378-4
isbn:
Обнаружение знаний в базах данных ставит много интересных проблем, особенно когда эти базы огромны. Таким базам данных обычно сопутствуют существенные знания предметной области, которые могут значительно облегчить обнаружение данных. Доступ к большим базам данных недешев – отсюда необходимость выборки и других статистических методов. Наконец, для обнаружения знаний в базах данных могут оказаться полезными многие существующие инструменты и методы из различных областей, таких как экспертные системы, машинное обучение, интеллектуальные базы данных, получение знаний и статистика[2].
Фактически термины «KDD» и «глубинный анализ данных» описывают одну и ту же концепцию; различие заключается только в том, что термин «глубинный анализ данных» более распространен в бизнес-сообществах, а «KDD» – в академических кругах. Сегодня эти понятия часто взаимозаменяются[3], и многие ведущие академические центры используют как одно, так и другое. И это закономерно, ведь главная научная конференция в этой сфере так и называется – Международная конференция по обнаружению знаний и глубинному анализу данных.
Термин «наука о данных» появился в конце 1990-х гг. в дискуссиях, касающихся необходимости объединения статистиков с теоретиками вычислительных систем для обеспечения математической строгости при компьютерном анализе больших данных. В 1997 г. Джефф Ву выступил с публичной лекцией «Статистика = наука о данных?», в которой осветил ряд многообещающих тенденций, в том числе доступность больших и сложных наборов данных в огромных базах и рост использования вычислительных алгоритмов и моделей. В завершение лекции он призвал переименовать статистику в «науку о данных».
В 2001 г. Уильям Кливленд опубликовал план действий по созданию университетского факультета, сфокусированного на науке о данных[4]. В плане подчеркивалось место науки о данных между математикой и информатикой и предлагалось понимать ее как междисциплинарную сферу. Специалистам по данным предписывалось учиться, работать и взаимодействовать с экспертами из этих областей. В том же году Лео Брейман опубликовал статью «Статистическое моделирование: две культуры»[5]. В ней он охарактеризовал традиционный подход к статистике как культуру моделирования данных, которая предполагает основной целью анализа выявление скрытых стохастических моделей (например, линейной регрессии
Конец ознакомительного СКАЧАТЬ
2
Цитата взята из приглашения на семинар «KDD – 1989». –
3
Некоторые специалисты все же проводят границу между глубинным анализом данных и KDD, рассматривая первый как подраздел второго и определяя его как один из методов обнаружения знаний в базах данных.
4
Shmueli, Galit. 2010. “To Explain or to Predict?” Statistical Science 25 (3): 289–310. doi:10.1214/10-STS330.
5
Breiman, Leo. 2001. “Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author).”