Название: Micrographia
Автор: Robert Hooke
Издательство: Bookwire
Жанр: Документальная литература
isbn: 4057664158499
isbn:
The Indeavours of Skilful men have been most conversant about the assistance of the Eye, and many noble Productions have followed upon it; and from hence we may conclude, that there it a way open'd for advancing the operations, not only of all the other Senses, but even of the Eye it self; that which has been already done ought not to content us, but rather to incourage us to proceed further, and to attempt greater things in the same, and different wayes.
'Tis not unlikely, but that there may be yet invented several other helps for the eye, at much exceeding those already found, as those do the bare eye, such as by which we may perhaps be able to discover living Creatures in the Moon, or other Planets, the figures of the compounding Particles of matter, and the particular Schematisms and Textures of Bodies.
And as Glasses have highly promoted our seeing, so 'tis not improbable, but that there may be found many Mechanical Inventions to improve our other Senses, of hearing, smelling, tasting, touching. 'Tis not impossible to hear a whisper a furlongs distance, it having been already done; and perhaps the nature of the thing would not make it more impossible, though that furlong should be ten times multiply'd. And though some famous Authors have affirm'd it impossible to hear through the thinnest plate of Muscovy-glass; yet I know a way, by which 'tis easie enough to hear one speak through a wall a yard thick. It has not been yet thoroughly examin'd, how far Otocousticons may be improv'd, nor what other wayes there may be of quickning our hearing, or conveying sound through other bodies then the Air: for that that it not the only medium, I can assure the Reader, that I have, by the help of a distended wire, propagated the sound to a very considerable distance in an instant, or with as seemingly quick a motion as that of light, at least, incomparably swifter then that, which at the same time was propagated through the Air; and this not only in a straight line, or direct, but in one bended in many angles.
Nor are the other three so perfect, but that diligence, attention, and many mechanical contrivances, may also highly improve them. For since the sense of smelling seems to be made by the swift passage of the Air (impregnated with the steams and effluvia of several odorous Bodies) through the grisly meanders of the Nose whose surfaces are cover'd with a very sensible nerve, and moistned by a transudation from the processus mamillares of the Brain, and some adjoyning glandules, and by the moist steam of the Lungs, with a Liquor convenient for the reception of those effluvia and by the adhesion and mixing of those steams with that liquor, and thereby affecting the nerve, or perhaps by insinuating themselves into the juices of the brain, after the same manner, as I have in the following Observations intimated, the parts of Salt to pass through the skins of Effs, and Frogs. Since, I say, smelling seems to be made by some such way, 'tis not improbable, but that some contrivance, for making a great quantity of Air pass quick through the Nose, might at much promote the sense of smelling, as the any wayes hindring that passage does dull and destroy it. Several tryals I have made, both of hindring and promoting this sense, and have succeeded in some according to expectation; and indeed to me it seems capable of being improv'd, for the judging of the constitutions of many Bodies. Perhaps we may thereby also judge (as other Creatures seem to do) what is wholsome, what poyson; and in a word, what are the specifick properties of Bodies.
There may be also some other mechanical wayes found out, of sensibly perceiving the effluvia of Bodies; several Instances of which, were it here proper, I could give of Mineral steams and exhalations; and it seems not impossible, but that by some such wayes improved, may be discovered, what Minerals lye buried under the Earth, without the trouble to dig for them; some things to confirm this Conjecture may be found in Agricola, and other Writers of Minerals, speaking of the Vegetables that are apt to thrive, or pine, in those steams.
Whether also those steams, which seem to issue out of the Earth, and mix with the Air (and so to precipitate some aqueous Exhalations, wherewith 'tis impregnated) may not be by some way detected before they produce the effect, seems hard to determine; yet something of this kind I am able to discover, by an Instrument I contriv'd to shew all the minute variations in the pressure of the Air; by which I constantly find, that before, and during the time of rainy weather, the pressure of the Air is less, and in dry weather, but especially when an Eastern Wind (which having past over vast tracts of Land is heavy with Earthy Particles) blows, it is much more, though these changes are varied according to very odd Laws.
The Instrument is this. I prepare a pretty capaceous Bolt-head AB, with a small stem about two foot and a half long DC; upon the end of this D I put on a small bended Glass, or brazen syphon DEF (open at D, E and F, but to be closed with cement at F and E, as occasion serves) whose stem F should be about six or eight inches long, but the bore of it not above half an inch diameter, and very even; these I fix very strongly together by the help of very hard Cement, and then fit the whole Glass ABCDEF into a long Board, or Frame, in such manner, that almost half the head AB may lye buried in a concave Hemisphere cut into the Board RS; Schem. 1. Fig. 1. then I place it so on the Board RS, as is exprest in the first figure of the first Scheme; and fix it very firm and steady in that posture, so as that the weight of the Mercury that is afterwards to be put into it, may not in the least shake or stir it; then drawing a line XY on the Frame RT, so that it may divide the ball into two equal parts, or that it may pass, as 'twere, through the center of the ball. I begin from that, and divide all the rest of the Board towards UT into inches, and the inches between the 25 and the end E (which need not be above two or three and thirty inches distant from the line XY) I subdivide into Decimals; then stopping the end F with soft Cement, or soft Wax, I invert the Frame, placing the head downwards, and the Orifice E upwards; and by it, with a small Funnel, I fill the whole Glass with Quicksilver; then by stopping the small Orifice E with my finger, I oftentimes erect and invert the whole Glass and Frame, and thereby free the Quicksilver and Glass from all the bubbles or parcels of lurking Air; then inverting it as before, I fill it top full with clear and well strain'd Quicksilver, and having made ready a small ball of pretty hard Cement, by heat made very soft, I press it into the hole E, and thereby stop it very fast; and to secure this Cement from flying out afterward, I bind over it a piece of Leather, that is spread over in the inside with Cement, and wound about it while the Cement is hot: Having thus softned it, I gently erect again the Glass after this manner: I first let the Frame down edge-wayes, till the edge RV touch the Floor, or ly horizontal; and then in that edging posture raise the end RS; this I do, that if there chance to be any Air hidden in the small Pipe E, it may ascend into the Pipe F, and not into the Pipe DC: Having thus erected it, and hung it by the hole Q, or fixt it perpendicularly by any other means, I open the end F, and by a small Syphon I draw out the Mercury so long, till I find the surface of it AB in the head to touch exactly the line XY; at which time I immediately take away the Syphon, and if by chance it be run somewhat below the line XY, by pouring in gently a little Mercury at F, I raise it again to its desired height, by this contrivance I make all the sensible rising and falling of the Mercury to be visible in the surface of the Mercury in the Pipe F, and scarce any in the head AB. But because there really is some small change of the upper surface also, I find by several Observations how much it rises in the Ball, and falls in the Pipe F, to make the distance between the two surfaces an inch greater then it was before; and the measure that it falls in the Pipe is the length of the inch by which I am to mark the parts of the Tube F, or the Board on which it lyes, into inches and Decimals: Having thus justned and divided it, I have a large Wheel MNOP, whose outmost limb is divided into two hundred equal parts; this by certain small Pillars is fixt on the Frame RT, in the manner exprest in the Figure. In the middle of this, on the back side, in a convenient frame, is placed a small Cylinder, whose circumference is equal to twice the length of one of those divisions, which I find answer to an inch of ascent, or descent, of Mercury: This Cylinder I, is movable СКАЧАТЬ