Название: The Greatest Works of Immanuel Kant
Автор: Immanuel Kant
Издательство: Bookwire
Жанр: Философия
isbn: 9788027232369
isbn:
My answer to this question is: “If the series is given in empirical intuition as a whole, the regress in the series of its internal conditions proceeds in infinitum; but, if only one member of the series is given, from which the regress is to proceed to absolute totality, the regress is possible only in indefinitum.” For example, the division of a portion of matter given within certain limits — of a body, that is — proceeds in infinitum. For, as the condition of this whole is its part, and the condition of the part a part of the part, and so on, and as in this regress of decomposition an unconditioned indivisible member of the series of conditions is not to be found; there are no reasons or grounds in experience for stopping in the division, but, on the contrary, the more remote members of the division are actually and empirically given prior to this division. That is to say, the division proceeds to infinity. On the other hand, the series of ancestors of any given human being is not given, in its absolute totality, in any experience, and yet the regress proceeds from every genealogical member of this series to one still higher, and does not meet with any empirical limit presenting an absolutely unconditioned member of the series. But as the members of such a series are not contained in the empirical intuition of the whole, prior to the regress, this regress does not proceed to infinity, but only in indefinitum, that is, we are called upon to discover other and higher members, which are themselves always conditioned.
In neither case — the regressus in infinitum, nor the regressus in indefinitum, is the series of conditions to be considered as actually infinite in the object itself. This might be true of things in themselves, but it cannot be asserted of phenomena, which, as conditions of each other, are only given in the empirical regress itself. Hence, the question no longer is, “What is the quantity of this series of conditions in itself — is it finite or infinite?” for it is nothing in itself; but, “How is the empirical regress to be commenced, and how far ought we to proceed with it?” And here a signal distinction in the application of this rule becomes apparent. If the whole is given empirically, it is possible to recede in the series of its internal conditions to infinity. But if the whole is not given, and can only be given by and through the empirical regress, I can only say: “It is possible to infinity, to proceed to still higher conditions in the series.” In the first case, I am justified in asserting that more members are empirically given in the object than I attain to in the regress (of decomposition). In the second case, I am justified only in saying, that I can always proceed further in the regress, because no member of the series is given as absolutely conditioned, and thus a higher member is possible, and an inquiry with regard to it is necessary. In the one case it is necessary to find other members of the series, in the other it is necessary to inquire for others, inasmuch as experience presents no absolute limitation of the regress. For, either you do not possess a perception which absolutely limits your empirical regress, and in this case the regress cannot be regarded as complete; or, you do possess such a limitative perception, in which case it is not a part of your series (for that which limits must be distinct from that which is limited by it), and it is incumbent on you to continue your regress up to this condition, and so on.
These remarks will be placed in their proper light by their application in the following section.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.