Научная рациональность и философский разум. Пиама Гайденко
Чтение книги онлайн.

Читать онлайн книгу Научная рациональность и философский разум - Пиама Гайденко страница 12

СКАЧАТЬ и бытия, оно служит связующим звеном между ними, или, как бы мы сейчас сказали, оно есть наилучший путь от восприятия и ощущения к мышлению, наилучший путь к научному познанию.

      Теперь посмотрим, какова же, по Платону, природа самого этого посредника – числа.

      Как ты думаешь, Главкон, если спросить их (математиков. – П. Г.): «Достойнейшие люди, о каких числах вы рассуждаете? Не о тех ли, в которых единица действительно такова, какой вы ее считаете, – то есть всякая единица равна всякой единице, ничуть от нее не отличается и не имеет в себе никаких частей?» – как ты думаешь, что они ответят?

      – Да, по – моему, что они говорят о таких числах, которые допустимо лишь мыслить, а иначе с ними никак нельзя обращаться»16.

      Как видим, важнейшая особенность числа – это его идеальность, в силу которой «его можно только мыслить». Как в арифметике число, так в геометрии точка, линия, плоскость и т. д. представляют собой, по Платону, идеальные образования, а не явления самой эмпирической реальности, а потому все они вводят человека в сферу, которая постигается мышлением, т. е., на языке Платона, в сферу истинного бытия. «Вот ты и видишь, мой друг, – констатирует Сократ, – что нам и в самом деле необходима эта наука, раз оказывается, что она заставляет душу пользоваться самим мышлением ради самой истины… Приходилось ли тебе наблюдать, как люди с природными способностями к счету бывают восприимчивы, можно сказать, ко всем наукам?»17.

      Согласно Платону, математика служит подготовкой мышления к постижению истинного бытия, которое осуществляется с помощью науки– диалектики, стоящей выше математики. Математическое мышление находится посредине между «мнением», опирающимся на чувственное восприятие, и диалектикой – высшей наукой. Платон впервые пришел к мысли, что число имеет другой онтологический статус, чем чувственные вещи: оно является идеальным образованием. Поэтому после Платона стало уже невозможным говорить о том, что вещи «состоят» из чисел; эти реалии теперь оказались размещенными как бы в разных «мирах»: мире идеальном и мире эмпирическом. Платоновский идеализм возник в результате того, что процедуру идеализации как способа образования научных (и прежде всего математических) понятий Платон смог впервые осознать, допустив существование некоторого идеального мира, мира чистых идей. Как отмечает А. Сабо, понимание чисел как идеальных образований послужило логико – теоретической базой для дальнейшего развития греческой математики. «Числа, – пишет он, – являются чисто мыслительными элементами, к которым невозможно подходить иначе, как путем чистого мышления. Следовательно, можно видеть, что та греческая математика, которая у Евклида стремилась избегать в своих доказательствах только наглядного и видимого, тоже хотела понимать свой предмет как такой, который полностью лежит в сфере чистого мышления. Именно эта тенденция науки сделала возможным прекраснейшие евклидовы доказательства…»18.

СКАЧАТЬ