Название: Энергия и цивилизация
Автор: Вацлав Смил
Издательство: Эксмо
Жанр: История
Серия: Большая наука
isbn: 978-5-04-101573-2
isbn:
Рисунок 1.4. Робота углежога в начале XVII века, Англия. Предоставлено: John Evelyn, «Silva»
Примечание 1.5. Плотность энергии растительного топлива
Фотосинтез превращает менее 0,5 % поступающего солнечного излучения в новую фитомассу. Лучшая годовая продуктивность древесного топлива для быстрорастущих видов (тополь, эвкалипт, сосна) составляет не больше чем 10 т/га, ну а в более засушливых регионах значение колеблется между 5 и 10 т/га (Smil 2015b). С плотностью энергии сухого дерева в среднем около 18 ГДж/т добыча в 10 т/га обеспечит плотность мощности около 0,6 Вт/м2: (10 т/га х 18 ГДж)/3,15 х 107 (секунд в год) = -5708 Вт; 5708 Вт/10000 м2/га = -0,6 Вт/м2. Большому городу XVIII века требовалось по меньшей мере 20–30 Вт/м2 на застроенную площадь для обогрева, приготовления пищи и мануфактурного производства, так что древесное топливо пришлось бы добывать с территории в 30–50 раз большей, чем сам город.
Древесный уголь был единственным бездымным топливом доиндустриальной эпохи, которое все традиционные цивилизации использовали для обогрева домов. А его изготовление сопровождается значительной потерей энергии, ведь даже в середине XVIII века типичное соотношение каменный уголь/дерево составляло один к пяти, что значило в терминах энергии (сухое дерево – 18 ГДж/т, древесный уголь, теоретически чистый углерод, – 29 ГДж/т) эффективность преобразования всего 30 % (5 х 18/29 = 0,32). Так что плотность мощности древесины, предназначенной для получения каменного угля, всего около 0,2 Вт/м2. Поэтому большим доиндустриальным городам, расположенным в умеренном климате северного полушария и зависящим от каменного угля (Пекин может быть хорошим примером), требовалась покрытая лесом территория по меньшей мере в 100 раз больше их собственного размера, чтобы не остаться без топлива.
Примечание 1.6. Повышение эффективности и парадокс Джевонса
Технический прогресс ведет за собой множество впечатляющих достижений в области эффективности, и история освещения является одним из лучших примеров (Nordhaus 1998; Fouquet and Pearson 2006). Свечи превращают всего лишь 0,01 % химической энергии сала или воска в свет. Лампочки Эдисона, изобретенные в 1880-х годах, были примерно в десять раз эффективнее. К 1900 году угольные электростанции имели эффективность примерно 10 %, лампочки превращали не более 1 % энергии в свет, отсюда ясно, что лишь 0,1 % химической энергии угля становилось светом (Smil 2005). Лучшая газовая турбина парогазового цикла (используется горячий газ, покидающий газовую турбину, чтобы производить пар для паровой турбины) в наше время имеет эффективность 60 %. Флуоресцентные лампы могут похвастаться 15 % эффективности, как и диодные светильники (USDOE 2013). Это значит, что около 9 % природного газа превращается в свет, выигрыш в 90 раз по сравнению с концом XIX века. Такой выигрыш сохраняет капитал и уменьшает текущие издержки, а также снижает давление на окружающую среду.
Но в прошлом рост эффективности преобразования энергии не всегда СКАЧАТЬ