Пояснюючи світ. Стивен Вайнберг
Чтение книги онлайн.

Читать онлайн книгу Пояснюючи світ - Стивен Вайнберг страница 25

Название: Пояснюючи світ

Автор: Стивен Вайнберг

Издательство: Книжный Клуб «Клуб Семейного Досуга»

Жанр: Прочая образовательная литература

Серия:

isbn: 978-617-12-6659-9, 978-617-12-5103-8, 978-617-12-6658-2, 978-617-12-6657-5

isbn:

СКАЧАТЬ сфери, було чималим досягненням. Анаксімандр вважав, що Земля – циліндр, на пласкому боці якого ми й живемо. На думку Анаксімена, Земля пласка, тоді як Сонце, Місяць та зірки плавають у повітрі й ховаються від нас, коли заходять за земні підвищення. Ксенофан писав: «Верхню межу Землі ми бачимо під ногами, але частина під нею йде вниз до нескінченності»4. Пізніше і Демокріт, і Анаксагор почали вважати, як і Анаксімен, що Земля пласка.

      Підозрюю, що причиною стійкої віри у пласку Землю могла бути очевидна проблема з ідеєю сферичної Землі: якщо Земля – це сфера, тоді чому мандрівники з неї не падають? Чудовою відповіддю на це запитання стала теорія матерії Арістотеля. Він розумів, що немає універсального напрямку «вниз», яким рухаються всі об’єкти, що падають будь-де. Радше скрізь на Землі об’єкти, що складаються з важких елементів землі та води, мають тенденцію падати до центру світу, як видно зі спостережень.

      У цьому сенсі теорія Арістотеля про те, що природне місце важких елементів – у центрі Всесвіту, працювала дуже схоже на сучасну теорію гравітації з тією важливою відмінністю, що для Арістотеля існував лише один центр Всесвіту, тоді як сьогодні ми розуміємо, що будь-яка велика маса матиме тенденцію стискатися у сферу під впливом її власної гравітації, а потім притягуватиме до свого центру інші тіла. Теорія Арістотеля не пояснювала, чому сферою має стати будь-яке інше тіло, крім Землі, проте він знав, що сферою є як мінімум Місяць, судячи з поступової зміни його фаз – з повного до молодика й назад5.

      Після Арістотеля загальновизнаною думкою серед астрономів та філософів (окрім небагатьох на кшталт Лактанція) було те, що Земля – це сфера. Подумки Архімед навіть бачив сферичну форму Землі у склянці води: у твердженні 2 твору «Про плаваючі тіла» він демонструє, що «поверхня будь-якої рідини у стані спокою – це поверхня сфери, центром якої є Земля»6. (Це було б правдою, якби не було поверхневого натягу, яким Архімед нехтував.)

      Тепер я переходжу до того, що в дечому є найбільш вражаючим прикладом застосування математики до природничих наук у Стародавньому світі, – до праці Арістарха Самоського. Арістарх народився близько 310 року до н. е. на іонійському острові Самос, був учнем Стратона Лампсакського, третього керівника Лікея в Афінах, а потім працював в Александрії аж до своєї смерті близько 230 року до н. е. На щастя, збереглася його головна робота «Про розміри й відстані Сонця та Місяця»7. У ній Арістарх бере за постулати такі чотири астрономічні спостереження:

      1. «У час півмісяця відстань Місяця від Сонця на одну тридцяту менша за квадрант». (Тобто, коли Місяць лише наполовину повний, кут між прямими від Землі до Місяця й до Сонця на 3° менший за 90° і становить 87°.)

      2. Під час сонячного затемнення Місяць просто закриває собою видимий диск Сонця.

      3. «Ширина земної тіні дорівнює подвійній ширині тіні Місяця». (Найпростішою інтерпретацією цього є те, що, якби на місці Місяця була СКАЧАТЬ