Мир как воля и представление. Афоризмы житейской мудрости. Эристика, или Искусство побеждать в спорах. Артур Шопенгауэр
Чтение книги онлайн.

Читать онлайн книгу Мир как воля и представление. Афоризмы житейской мудрости. Эристика, или Искусство побеждать в спорах - Артур Шопенгауэр страница 37

СКАЧАТЬ лишь проанализировать ход мысли, совершенный при первом открытии геометрической истины, чтобы наглядно понять ее необходимость. Вообще я желал бы, чтобы математика преподавалась с помощью аналитического метода вместо синтетического, который применял Евклид. Правда, для сложных математических истин это было бы сопряжено с очень большими, хотя и не непреодолимыми трудностями. В Германии в разных местах уже начинают изменять преподавание математики и чаще идут по этому аналитическому пути. Решительнее всех это сделал господин Козак, учитель математики и физики в Нордхаузенской гимназии: к программе экзаменов 6 апреля 1852 г. он присоединил обстоятельную попытку изложения геометрии по указанным мною принципам.

      Для улучшения математического метода в особенности необходимо отрешиться от предрассудка, будто доказанная истина имеет какие-то преимущества сравнительно с познанной наглядно, или будто логическая истина, основанная на законе противоречия, лучше метафизической, которая непосредственно очевидна и к которой принадлежит также чистое созерцание пространства.

      Самое достоверное и повсюду необъяснимое, это – содержание закона основания. Ибо он в своих различных видах выражает всеобщую форму всех наших представлений и познаний. Всякое объяснение – это сведение к нему, указание в отдельном случае на выражаемую им вообще связь представлений. Он является, следовательно, принципом всех объяснений и потому сам не поддается объяснению и не нуждается в нем, так как всякое объяснение уже предполагает его и лишь через него получает свое значение. При этом ни один из его видов не имеет преимущества перед другими: он равно достоверен и недоказуем как закон основания бытия, или становления, или действия, или познания. Отношение основания к следствию как в одном, так и в других его видах имеет необходимый характер; оно вообще является источником и единственным смыслом понятия необходимости. Не существует другой необходимости, кроме той, что необходимо следствие, если дано основание, и не существует основания, которое не влекло бы за собой необходимости следствия. И подобно тому, как несомненно из данного в посылках основания познания вытекает выражаемое в заключении следствие, так же несомненно основание бытия в пространстве; если я наглядно понял соотношение двух последних, то его несомненность так же велика, как и любая логическая достоверность. А выражением такого соотношения и служит каждая геометрическая теорема, – не менее, чем какая-нибудь из двенадцати аксиом: ведь теорема представляет собой метафизическую истину и таковая столь же непосредственно достоверна, как и самый закон противоречия, являющийся металогической истиной и общей основой всякого логического доказательства. Кто отрицает наглядно представленную необходимость пространственных отношений, выражаемых в какой-либо теореме, тот может с одинаковым правом отрицать и аксиомы, с одинаковым правом отрицать вывод заключения из посылок и даже самый закон противоречия, ибо все это – одинаково СКАЧАТЬ