Название: Mars. W poszukiwaniu życia
Автор: David A. Weintraub
Издательство: Автор
Жанр: Физика
isbn: 978-83-01-20694-9
isbn:
Badania spektroskopowe Hugginsa były pionierskie i dobrze wykonane. Działała i nadal działa jego technika rozróżniania cech spektroskopowych Marsa od tych pochodzących z atmosfery Słońca i Ziemi. Jednakże Huggins właściwie nie wiedział, jaka substancja była odpowiedzialna za dużą ilość niebieskich i fioletowych linii absorpcyjnych w marsjańskim widmie, a przez to nie posiadał żadnego rzeczywistego dowodu na istnienie wody w marsjańskiej atmosferze. To stwierdzenie szeroko zaakceptowane przez profesjonalną wspólnotę astronomów było niczym więcej niż hipotezą i, jak wiemy obecnie, nadinterpretacją tych danych. Huggins poszedł o jeden krok za daleko, ale inni poszli za jego wpływowym przewodnictwem.
Francuski astronom Jules Janssen, który użył techniki spektroskopii do zaobserwowania po raz pierwszy helu w atmosferze Słońca, podczas całkowitego zaćmienia w 1868 r.60, oraz był założycielem obserwatorium Meudon w 1875 r., kontynuował badania Hugginsa za pomocą swojego pomysłowego spektroskopowego eksperymentu. W 1867 r. przetransportował swój sprzęt na szczyt wulkanu Etna na Sycylii na wysokość 3389 metrów. Z tego miejsca uzyskał widma zarówno Księżyca, Marsa, jak i Saturna. Na tej dużej wysokości, gdzie jak wierzył, znajduje się ponad większością wody w atmosferze Ziemi (mylił się61), miał nadzieję zminimalizować wpływ ziemskiej pary wodnej na widmo badanych obiektów. Myślał, że dzięki zminimalizowaniu zanieczyszczeń widma spowodowanych przez ziemską parę wodną i następnie porównaniu widma Marsa obserwowanego na dużej wysokości z wynikami otrzymanymi na poziomie morza z Palermo oraz danymi dotyczącymi ziemskiej pary wodnej zebranymi w La Villette w Paryżu, dokonał precyzyjnie jakościowego porównania zawartości wody w atmosferach Marsa i Ziemi. Janssen wywnioskował na podstawie swoich badań, tak jak Huggins, że mógł wykryć „obecność pary wodnej w atmosferach Marsa i Saturna”62.
William Wallace Campbell podobnie jak Huggins był kolejnym pionierem spektroskopii astronomicznej. Krótko po założeniu w 1888 r. przez Uniwersytet Kalifornijski obserwatorium Licka pierwszy jego dyrektor zatrudnił Campbella jako młodego pomocnika, by pomagał w spektroskopowych obserwacjach starszemu astronomowi Jamesowi Keelerowi. Kiedy Keeler przeniósł się do obserwatorium Allegheny, Campbell przejął jego stanowisko starszego astronoma. Campbell szybko zaczął używać potężnych narzędzi, które miał do dyspozycji. Jednym z tych narzędzi był Wielki Refraktor, teleskop o średnicy 91 cm. Ufundował go ekscentryczny kalifornijski milioner James Lick, który chciał, by zbudować „teleskop doskonalszy i potężniejszy niż wszystkie dotąd wykonane”63.
W 1894 r., odnotowując dokładnie błędy popełnione przez Hugginsa i Janssena w ich naukowych sprawozdaniach, zwłaszcza w obserwacji z wilgotnego środowiska, Campbell stwierdził, że połączone czynniki: suche środowisko Kalifornii, największy teleskop na świecie, który miał do dyspozycji, duża wysokość nad poziomem morza – 1300 metrów oraz udoskonalony sprzęt, którego będzie używał, umożliwią mu przeprowadzenie definitywnego testu rozstrzygającego, czy istnieją w atmosferze Marsa wykrywalne poziomy pary wodnej. Następnie przedstawił kryteria, według których miał porównać widmo Marsa z księżycowym, oraz wyjaśnił, jak te spektra zostaną uzyskane w identycznych warunkach obserwacyjnych. Udzielił odpowiedzi po obserwacji Marsa i Księżyca w ciągu dziesięciu nocy w lipcu i sierpniu 1894 r. „Widma Marsa i Księżyca, obserwowane w korzystnych i identycznych warunkach, wydają się takie same w każdym aspekcie”. Ponieważ wiadomo było, że Księżyc nie posiada atmosfery, odpowiedź dla Campbella była jasna. Jakiekolwiek linie absorpcyjne w widmie Księżyca musiały pochodzić jedynie z ziemskiej atmosfery. Co więcej, ponieważ księżycowe i marsjańskie widmo wyglądało tak samo, analogiczna konkluzja mogła być zastosowana do Marsa. Według jego słów „Pasma atmosferyczne pary wodnej, które były zaobserwowane w obu widmach, wydają się w całości wyprodukowane przez elementy atmosfery ziemskiej. W związku z tym obserwacje nie dostarczają żadnych dowodów na obecność pary wodnej w atmosferze marsjańskiej”64. Campbell wykazał, całkiem przekonująco, że Huggins i Janssen wykryli parę wodną w ziemskiej atmosferze, a nie w atmosferze Marsa.
W listopadzie 1894 r., po tym, jak Campbell zakwestionował twierdzenia Hugginsa o odkryciu pary wodnej w atmosferze Marsa, Huggins powrócił do swojej pracy sprzed trzech dekad i ponownie podjął wyzwanie. Najpierw otrzymał fotografie widma zarówno Księżyca, jak i Marsa, ale nie był w stanie dostrzec na nich żadnych różnic między spektralnymi cechami tych dwóch obiektów. Jednakże przez trzy noce w grudniu oboje Huggins ze swoją żoną porównali na oko, uzyskane w czasie kilku minut po sobie, słabe pasma widmowe Księżyca i Marsa. Huggins napisał później w artykule, który zdecydował się opublikować w pierwszym numerze nowego czasopisma „Astrophysical Journal”, zapowiadanego jako „międzynarodowy przegląd spektroskopii i astronomii fizycznej” – „W czasie tych trzech nocy linie atmosferyczne […], na które nasza uwaga niemal wyłącznie była ukierunkowana, różniły się zauważalnie w intensywności w widmie Księżyca, ale były zawsze oceniane przez nas na zasadniczo silniejsze w widmie Marsa”. W powtórzonych wersjach tego doświadczenia „niezależne obserwacje pani Huggins zgadzały się z moimi”. Wnioskiem z ich pracy było „porzucenie silnego przekonania w naszych umysłach, mówiącego, że spektroskop pokazuje absorpcję, która rzeczywiście pochodzi z atmosfery Marsa”. Niewypowiedziane, ale zrozumiałe dla wszystkich było to, że to pasma absorpcyjne65 były oznaką istnienia pary wodnej w marsjańskiej atmosferze66. Również niewyrażony był fakt, że Huggins wprawdzie opublikował swoje wnioski w „Astrophysical Journal”, ale oparł je na starych technikach oceniania marsjańskich kolorów przy użyciu ludzkiego oka, podczas gdy Campbell na współczesnej astrofizyce.
W 1908 r. Vesto Melvin Slipher, pracujący wśród personelu Percivala Lowella oraz w imieniu Lowella w jego obserwatorium we Flagstaff w Arizonie, obserwował Marsa z dużej wysokości – 2210 metrów. Przez kolejne kilka dekad Slipher stał się jednym z najlepszych astronomów obserwatorów w XX w., jeżeli nie najlepszych kiedykolwiek. Przede wszystkim przez dekadę od 1913 r. zmierzył prędkości radialne (w stronę lub od Ziemi) kilkudziesięciu galaktyk i odkrył, że prawie wszystkie były przesunięte ku czerwieni. Oznacza to, że galaktyki te oddalały się od Drogi Mlecznej z prędkościami od setek do tysięcy kilometrów na sekundę. Edwin Hubble stwierdził w 1929 r., że prędkości oddalania się galaktyk zmierzone przez Sliphera oraz jego własne nowsze pomiary były proporcjonalnie powiązane z odległościami do tych galaktyk. Oznaczało to, że galaktyki bardziej odległe od Drogi Mlecznej, czyli od nas, oddalały się z większą prędkością niż galaktyki bliższe. Zatem pomiary prędkości galaktyk przesuniętych ku czerwieni wykonane przez Sliphera doprowadziły bezpośrednio do odkrycia Hubble’a, że wszechświat się rozszerza, i do zrozumienia przez nas, że wszechświat rozpoczął się od Wielkiego Wybuchu.
Slipher spędził całą swoją karierę w obserwatorium Lowella we Flagstaff w Arizonie. Rozpoczął tam pracę jako asystent w 1901 r. i po śmierci Percivala Lowella pełnił funkcję dyrektora obserwatorium od 1916 do 1954 r. W czasie jego przewodnictwa obserwatorium Lowella zatrudniło w 1929 r. Clyde’a Tombaugha. Wkrótce po tym Tombaugh odkrył Plutona. Slipher ugruntował swoją reputację dzięki temu, że ogłaszał swoje odkrycia jedynie po bardzo dokładnym i ostrożnym ich potwierdzeniu. Ostatecznie według jego biografa Williama Gravesa Hoyta „Slipher prawdopodobnie dokonał więcej fundamentalnych odkryć niż jakikolwiek inny astronom obserwacyjny w XX w.”67 Slipher СКАЧАТЬ
Jednakże Janssen jedynie zauważył jasną żółtą linię w widmie słonecznym. Później w 1868 r. Anglik Norman Lockyer zauważył tę samą linię. Hel, który jest przyczyną tej żółtej linii, został po raz pierwszy wyizolowany w laboratorium na Ziemi przez szkockiego chemika Williama Ramsaya w 1895 r. Ramsay został uhonorowany Nagrodą Nobla w dziedzinie chemii w 1904 r., „w uznaniu jego zasług w odkryciu obojętnych pierwiastków gazowych w powietrzu i określenia ich miejsca w układzie okresowym”.
Gęstość ziemskiej atmosfery na wysokości 5,6 kilometra wynosi około 50 proc. gęstości na poziomie morza. Jednak ilość pary wodnej w atmosferze różni się znacznie w zależności od położenia geograficznego, a także od wysokości.
J. Janssen, „Comptes rendus”, 1867, t. LXIV, s. 1304.
W.W. Campbell,
Pasmo absorpcji jest serią linii widmowych, które mają wspólne źródło, np. cząsteczki wody, w takim samym stanie energetycznym, i które leżą blisko siebie w długości fali. Przy niskiej rozdzielczości te liczne linie absorpcyjne łączą się w jedno szerokie pasmo absorpcji.
W. Huggins,
W.G. Hoyt,