Анти-Дюринг. Фридрих Энгельс
Чтение книги онлайн.

Читать онлайн книгу Анти-Дюринг - Фридрих Энгельс страница 20

Название: Анти-Дюринг

Автор: Фридрих Энгельс

Издательство: Public Domain

Жанр: Философия

Серия: Философия – Neoclassic

isbn: 978-5-17-117000-4

isbn:

СКАЧАТЬ имеет начала во времени и конца в пространстве. И именно в том, что первое из этих положений так же доказуемо, как и второе, Кант усматривает антиномию, неразрешимое противоречие. Люди меньшего калибра, быть может, несколько призадумались бы над тем, что «некий Кант» нашел здесь неразрешимую трудность. Но не таков наш смелый изготовитель «своеобразных в самой основе выводов и воззрений»: то, что ему может пригодиться из антиномии Канта, он прилежно списывает, а остальное отбрасывает в сторону.

      Вопрос сам по себе разрешается очень просто. Вечность во времени, бесконечность в пространстве, – как это ясно с первого же взгляда и соответствует прямому смыслу этих слов, – состоят в том, что тут нет конца ни в какую сторону, – ни вперед, ни назад, ни вверх, ни вниз, ни вправо, ни влево. Эта бесконечность совершенно иная, чем та, которая присуща бесконечному ряду, ибо последний всегда начинается прямо с единицы, с первого члена ряда. Неприменимость этого представления о ряде к нашему предмету обнаруживается тотчас же, как только мы пробуем применить его к пространству. Бесконечный ряд в применении к пространству – это линия, которая из определенной точки в определенном направлении проводится в бесконечность. Выражается ли этим хотя бы в отдаленной степени бесконечность пространства? Отнюдь нет: требуется, напротив, шесть линий, проведенных из одной точки в трояко противоположных направлениях, чтобы дать представление об измерениях пространства; и этих измерений у нас было бы, следовательно, шесть. Кант настолько хорошо понимал это, что только косвенно, обходным путем переносил свой числовой ряд на пространственность мира. Г-н Дюринг, напротив, заставляет нас принять шесть измерений в пространстве и тотчас же вслед за этим не находит достаточно слов для выражения своего негодования по поводу математического мистицизма Гаусса, который не хотел довольствоваться тремя обычными измерениями пространства[48].

      В применении ко времени бесконечная в обе стороны линия, или бесконечный в обе стороны ряд единиц, имеет известный образный смысл. Но если мы представляем себе время как ряд, начинающийся с единицы, или как линию, выходящую из определенной точки, то мы тем самым уже заранее говорим, что время имеет начало; мы предполагаем как раз то, что должны доказать. Мы придаем бесконечности времени односторонний, половинчатый характер; но односторонняя, разделенная пополам бесконечность есть также противоречие в себе, есть прямая противоположность «бесконечности, мыслимой без противоречий». Избежать такого противоречия можно лишь приняв, что единицей, с которой мы начинаем считать ряд, точкой, отправляясь от которой мы производим измерение линии, может быть любая единица в ряде, любая точка на линии и что для линии или ряда безразлично, где мы поместим эту единицу или эту точку.

      Но как быть с противоречием «сосчитанного бесконечного числового ряда»? Его мы сможем исследовать ближе в том случае, если г-н Дюринг покажет нам кунштюк, СКАЧАТЬ



<p>48</p>

Речь идет о выпадах Дюринга против идей великого немецкого математика К. Ф. Гаусса относительно построения неевклидовой геометрии, в особенности – относительно построения геометрии многомерного пространства.