Название: Квант
Автор: Джим Аль-Халили
Издательство: РИПОЛ Классик
Жанр: Физика
Серия: Prisma
isbn: 978-5-386-12495-3
isbn:
Так почему мы не можем применить то же самое уравнение для описания движения микроскопической частицы вроде электрона? Если электрон в данный момент находится в определенной точке и мы применяем к нему некоторую силу, например включая электрическое поле, то мы должны быть в состоянии сказать наверняка, что через пять секунд он будет находиться в такой-то точке.
Но это не так. Оказывается, уравнения, описывающие движения окружающих нас объектов, от песчинок и футбольных мячей до планет, в квантовом мире бесполезны.
Самое важное уравнение физики
Серьезный вклад в развитие теоретического понимания квантовой механики внес австрийский физик Эрвин Шрёдингер, который взял идеи де Бройля и поставил их на твердое математическое основание. Важно отметить, что существует несколько математических способов описать поведение квантовой системы вроде электрона или атома, и подход Шрёдингера – лишь один из них. Однако именно так квантовую механику обычно преподают студентам-физикам и так я буду ее разбирать на страницах этой книги.
Шрёдингер решил проверить, можно ли с помощью идеи де Бройля о волнах объяснить модель атома Бора. Напомню, Бор предположил, что электроны в атомах двигаются по фиксированным (квантованным) орбитам, но никто не знает, почему так происходит. Шрёдингер предложил новое уравнение, которое описывает не принцип движения частицы, а принцип развертывания волны. В результате у него получилось волновое уравнение.
В наши дни авторы научно-популярных книг об идеях современной физики, как правило, обходят стороной все математические уравнения, кроме Е=mc2, о котором я уже упоминал. Но уравнение Шрёдингера заслуживает хотя бы краткого обзора (см. формулу на странице 64), пускай и из эстетических соображений[16].
Результатом решения уравнения Шрёдингера является математическая величина, называемая волновой функцией. Именно здесь и проявляет себя вся вероятностная природа квантовой механики. В случае с электроном, к примеру, волновая функция не дает нам его точного положения в конкретный момент времени и раскрывает лишь вероятность того, что электрон окажется в том месте, где мы будем его искать. Само собой, вы сразу подумали: но этого мало! Сложно поверить, что мы не можем получить никакой более точной информации, чем сообщение о том, где может находиться электрон. Конечно, прочитав это, вы все равно ничего не поняли. Поэтому я постараюсь объяснить лучше.
Волновая функция содержит большое количество информации. В любой момент времени она обладает значением для каждой точки в пространстве. Так что, в отличие от положения в пространстве классической частицы, волновая функция распространяется на все пространство – отсюда и термин «волновая». Но не стоит думать, будто она представляет собой настоящую СКАЧАТЬ
16
Другой вопрос, захотят ли подростки носить