Квант. Джим Аль-Халили
Чтение книги онлайн.

Читать онлайн книгу Квант - Джим Аль-Халили страница 12

Название: Квант

Автор: Джим Аль-Халили

Издательство: РИПОЛ Классик

Жанр: Физика

Серия: Prisma

isbn: 978-5-386-12495-3

isbn:

СКАЧАТЬ интенсивен, чтобы наделить электроны достаточным количеством энергии для отрыва. Однако при наблюдении выяснилось, что существует минимальная частота света, ниже которой электроны не испускаются, какой бы высокой ни была его интенсивность.

      Наконец, волновая теория предполагает, что, находясь под действием энергии световой волны, электроны будут нуждаться в конечном времени для поглощения достаточного количества энергии, чтобы оторваться от поверхности, особенно если свет слаб. Но временной задержки не наблюдалось. Электроны выбивались, как только свет попадал на поверхность.

      Яркий, более интенсивный свет является результатом большего количества фотонов, чем тусклый свет. Но средняя энергия отдельного фотона в обоих случаях одинакова.

      Эйнштейн успешно объяснил этот эффект, применив идею Планка к сгусткам энергии света. Не забывайте, Планк не дошел до того, чтобы сказать, что все излучение делится на кванты. Вместо этого он предположил, что черное тело излучает энергию пакетами, поскольку это обусловлено свойствами материи. При этом он полагал, что в общем случае электромагнетическое излучение непрерывно. Эйнштейн предположил, что весь свет состоит из квантов энергии[12], которые теперь называют фотонами. Принять такое Планк был не готов.

      Двойственная природа света

      Вклад Планка и Эйнштейна в квантовую революцию стал лишь первым шагом на пути к ней. Оглядываясь сегодня назад и учитывая все, что мы знаем о богатстве квантовой механики и феноменах, которые она может объяснить, мы видим, что в идее о частицах света нет ничего удивительного. В конце концов, даже сам Исаак Ньютон полагал, что свет состоит из частиц, которые он называл «корпускулами». Современник Ньютона, голландский астроном Христиан Гюйгенс, разработал конкурирующую волновую теорию света. Но только в начале XIX века англичанин по имени Томас Юнг смог доказать, что свет совершенно точно представляет собой волну.

      Юнг провел эксперимент с двумя прорезями[13] со светом – этот эксперимент даже иногда называют экспериментом Юнга с прорезями, – а как мы увидели в первой главе, в его результатах нет ничего загадочного, если нам позволено думать, что волны проникают одновременно сквозь обе прорези. Мы понимаем, как волны делают это, и в результате на втором экране возникает картина интерференции. Нечего и удивляться, что после наблюдений Юнга ученые на сотню лет и думать забыли о том, что свет может состоять из частиц. В течение XIX века физики отдавали Ньютону должное за его великие достижения – его до сих пор по праву считают одним из величайших физиков всех времен, – однако о его идее корпускул света всегда забывали. Если бы свет действительно состоял из частиц, на экране не могла бы проявляться картина интерференции.

      Но затем, спустя сто лет после экспериментов Юнга, Эйнштейн доказал, что ради объяснения фотоэлектрического эффекта свет следует считать потоком частиц!

      Так СКАЧАТЬ



<p>12</p>

Представьте их сгустками энергии, локализованными в пространстве. Однако, для того чтобы идея о «частицах» света прижилась, понадобилось некоторое время.

<p>13</p>

Само собой, в первой главе я называл его «фокусом», только чтобы добавить драматизма.