Название: Цифровое общество в культурно-исторической парадигме
Автор: Коллектив авторов
Издательство: МПГУ
Жанр: Прочая образовательная литература
isbn: 978-5-4263-0722-3
isbn:
Сегодня вновь приобретают актуальность исследования конформности и подчинения, однако, в роли авторитетного другого будут выступать не экспериментаторы, а киберфизические системы, искусственный интеллект или специалисты по большим данным, психологически бесконечно далекие для обывателя. Чрезвычайно важно изучить, как все большая «искусственность» управляемой нейросетями повседневной жизни повлияет на фундаментальные психологические феномены – объяснение человеком своих успехов и неудач, веру в способность влиять на свое будущее, убеждение в справедливости мира, доверие к социальным институтам.
Перечисленные нами проблемы станут обостряться по мере того, как автоматизация будет приводить к потере все большего числа рабочих мест, особенно в массовых профессиях – среди продавцов, водителей и грузчиков, бухгалтеров, юристов, программистов. Потеряв работу из-за внедрения технологий искусственного интеллекта, они все равно будут вынуждены этими технологиями пользоваться. Какие требования будут предъявлять к искусственному интеллекту люди, вынужденные менять профессиональную идентичность? Каковы социально-психологические последствия появления в обществе большого количества «лишних людей»?
Целый ряд важных направлений исследований можно выделить в связи с влиянием ИИ на межличностные отношения и социальные группы. Применение машинного обучения уже сегодня влияет на формирование персонального социального капитала и межличностное сравнение в социальных сетях, подсказывая нам людей, похожих на нас. Как повлияют персональные помощники на процессы каузальной атрибуции? Будем ли мы по-прежнему более склонны объяснять поведение других людей их личностными качествами, а не обстоятельствами? Внимание исследователей сосредоточено на том, как люди взаимодействуют в мультиагентных человеко-машинных системах, в том числе с социальными роботами. Особенно перспективными в этом направлении представляются модели «межличностного» восприятия роботов (Kotov, 2017), а также СКАЧАТЬ