Six Lectures on Light. Delivered In The United States In 1872-1873. John Tyndall
Чтение книги онлайн.

Читать онлайн книгу Six Lectures on Light. Delivered In The United States In 1872-1873 - John Tyndall страница 7

Название: Six Lectures on Light. Delivered In The United States In 1872-1873

Автор: John Tyndall

Издательство: Public Domain

Жанр: Физика

Серия:

isbn:

isbn:

СКАЧАТЬ cell of clear water interposed in the track of our beam does not perceptibly change any one of the colours of the spectrum. Still absorption, though insensible, has here occurred, and to render it sensible we have only to increase the depth of the water through which the light passes. Instead of a cell an inch thick, let us take a layer, ten or fifteen feet thick: the colour of the water is then very evident. By augmenting the thickness we absorb more of the light, and by making the thickness very great we absorb the light altogether. Lampblack or pitch can do no more, and the only difference in this respect between them and water is that a very small depth in their case suffices to extinguish all the light. The difference between the highest known transparency and the highest known opacity is one of degree merely.

      If, then, we render water sufficiently deep to quench all the light; and if from the interior of the water no light reaches the eye, we have the condition necessary to produce blackness. Looked properly down upon, there are portions of the Atlantic Ocean to which one would hardly ascribe a trace of colour: at the most a tint of dark indigo reaches the eye. The water, in fact, is practically black, and this is an indication both of its depth and purity. But the case is entirely changed when the ocean contains solid particles in a state of mechanical suspension, capable of sending the light impinging on them back to the eye.

      Throw, for example, a white pebble, or a white dinner plate, into the blackest Atlantic water; as it sinks it becomes greener and greener, and, before it disappears, it reaches a vivid blue green. Break such a pebble, or plate, into fragments, these will behave like the unbroken mass: grind the pebble to powder, every particle will yield its modicum of green; and if the particles be so fine as to remain suspended in the water, the scattered light will be a uniform green. Hence the greenness of shoal water. You go to bed with the black water of the Atlantic around you. You rise in the morning, find it a vivid green, and correctly infer that you are crossing the Bank of Newfoundland. Such water is found charged with fine matter in a state of mechanical suspension. The light from the bottom may sometimes come into play, but it is not necessary. The subaqueous foam, generated by the screw or paddle-wheels of a steamer, also sends forth a vivid green. The foam here furnishes a reflecting surface, the water between the eye and it the absorbing medium.

      Nothing can be more superb than the green of the Atlantic waves when the circumstances are favourable to the exhibition of the colour. As long as a wave remains unbroken no colour appears, but when the foam just doubles over the crest like an Alpine snow-cornice, under the cornice we often see a display of the most exquisite green. It is metallic in its brilliancy. The foam is first illuminated, and it scatters the light in all directions; the light which passes through the higher portion of the wave alone reaches the eye, and gives to that portion its matchless colour. The folding of the wave, producing, as it does, a series of longitudinal protuberances and furrows which act like cylindrical lenses, introduces variations in the intensity of the light, and materially enhances its beauty.

      We are now prepared for the further consideration of a point already adverted to, and regarding which error long found currency. You will find it stated in many books that blue light and yellow light mixed together, produce green. But blue and yellow have been just proved to be complementary colours, producing white by their mixture. The mixture of blue and yellow pigments undoubtedly produces green, but the mixture of pigments is a totally different thing from the mixture of lights.

      Helmholtz has revealed the cause of the green produced by a mixture of blue and yellow pigments. No natural colour is pure. A blue liquid, or a blue powder, permits not only the blue to pass through it, but a portion of the adjacent green. A yellow powder is transparent not only to the yellow light, but also in part to the adjacent green. Now, when blue and yellow are mixed together, the blue cuts off the yellow, the orange, and the red; the yellow, on the other hand, cuts off the violet, the indigo, and the blue. Green is the only colour to which both are transparent, and the consequence is that, when white light falls upon a mixture of yellow and blue powders, the green alone is sent back to the eye. You have already seen that the fine blue ammonia-sulphate of copper transmits a large portion of green, while cutting off all the less refrangible light. A yellow solution of picric acid also allows the green to pass, but quenches all the more refrangible light. What must occur when we send a beam through both liquids? The experimental answer to this question is now before you: the green band of the spectrum alone remains upon the screen.

      The impurity of natural colours is strikingly illustrated by an observation recently communicated to me by Mr. Woodbury. On looking through a blue glass at green leaves in sunshine, he saw the superficially reflected light blue. The light, on the contrary, which came from the body of the leaves was crimson. On examination, I found that the glass employed in this observation transmitted both ends of the spectrum, the red as well as the blue, and that it quenched the middle. This furnished an easy explanation of the effect. In the delicate spring foliage the blue of the solar light is for the most part absorbed, and a light, mainly yellowish green, but containing a considerable quantity of red, escapes from the leaf to the eye. On looking at such foliage through the violet glass, the green and the yellow are stopped, and the red alone reaches the eye. Thus regarded, therefore, the leaves appear like faintly blushing roses, and present a very beautiful appearance. With the blue ammonia-sulphate of copper, which transmits no red, this effect is not obtained.

      As the year advances the crimson gradually hardens to a coppery red; and in the dark green leaves of old ivy it is almost absent. Permitting a beam of white light to fall upon fresh leaves in a dark room, the sudden change from green to red, and from red back to green, when the violet glass is alternately introduced and withdrawn, is very surprising. Looked at through the same glass, the meadows in May appear of a warm purple. With a solution of permanganate of potash, which, while it quenches the centre of the spectrum, permits its ends to pass more freely than the violet glass, excellent effects are also obtained.7

      This question of absorption, considered with reference to its molecular mechanism, is one of the most subtle and difficult in physics. We are not yet in a condition to grapple with it, but we shall be by-and-by. Meanwhile we may profitably glance back on the web of relations which these experiments reveal to us. We have, firstly, in solar light an agent of exceeding complexity, composed of innumerable constituents, refrangible in different degrees. We find, secondly, the atoms and molecules of bodies gifted with the power of sifting solar light in the most various ways, and producing by this sifting the colours observed in nature and art. To do this they must possess a molecular structure commensurate in complexity with that of light itself. Thirdly, we have the human eye and brain, so organized as to be able to take in and distinguish the multitude of impressions thus generated. The light, therefore, at starting is complex; to sift and select it as they do, natural bodies must be complex; while to take in the impressions thus generated, the human eye and brain, however we may simplify our conceptions of their action,8 must be highly complex.

      Whence this triple complexity? If what are called material purposes were the only end to be served, a much simpler mechanism would be sufficient. But, instead of simplicity, we have prodigality of relation and adaptation—and this, apparently, for the sole purpose of enabling us to see things robed in the splendours of colour. Would it not seem that Nature harboured the intention of educating us for other enjoyments than those derivable from meat and drink? At all events, whatever Nature meant—and it would be mere presumption to dogmatize as to what she meant—we find ourselves here, as the upshot of her operations, endowed, not only with capacities to enjoy the materially useful, but endowed with others of indefinite scope and application, which deal alone with the beautiful and the true.

      LECTURE II

      ORIGIN OF PHYSICAL THEORIES

      SCOPE OF THE IMAGINATION

      NEWTON AND THE EMISSION THEORY

      VERIFICATION OF PHYSICAL THEORIES

      THE LUMINIFEROUS ETHER

      WAVE СКАЧАТЬ



<p>7</p>

Both in foliage and in flowers there are striking differences of absorption. The copper beech and the green beech, for example, take in different rays. But the very growth of the tree is due to some of the rays thus taken in. Are the chemical rays, then, the same in the copper and the green beech? In two such flowers as the primrose and the violet, where the absorptions, to judge by the colours, are almost complementary, are the chemically active rays the same? The general relation of colour to chemical action is worthy of the application of the method by which Dr. Draper proved so conclusively the chemical potency of the yellow rays of the sun.

<p>8</p>

Young, Helmholtz, and Maxwell reduce all differences of hue to combinations in different proportions of three primary colours. It is demonstrable by experiment that from the red, green, and violet all the other colours of the spectrum may be obtained.

Some years ago Sir Charles Wheatstone drew my attention to a work by Christian Ernst Wünsch, Leipzig 1792, in which the author announces the proposition that there are neither five nor seven, but only three simple colours in white light. Wünsch produced five spectra, with five prisms and five small apertures, and he mixed the colours first in pairs, and afterwards in other ways and proportions. His result is that red is a simple colour incapable of being decomposed; that orange is compounded of intense red and weak green; that yellow is a mixture of intense red and intense green; that green is a simple colour; that blue is compounded of saturated green and saturated violet; that indigo is a mixture of saturated violet and weak green; while violet is a pure simple colour. He also finds that yellow and indigo blue produce white by their mixture. Yellow mixed with bright blue (Hochblau) also produces white, which seems, however, to have a tinge of green, while the pigments of these two colours when mixed always give a more or less beautiful green, Wünsch very emphatically distinguishes the mixture of pigments from that of lights. Speaking of the generation of yellow, he says, 'I say expressly red and green light, because I am speaking about light-colours (Lichtfarben), and not about pigments.' However faulty his theories may be, Wünsch's experiments appear in the main to be precise and conclusive. Nearly ten years subsequently, Young adopted red, green, and violet as the three primary colours, each of them capable of producing three sensations, one of which, however, predominates over the two others. Helmholtz adopts, elucidates, and enriches this notion. (Popular Lectures, p. 249. The paper of Helmholtz on the mixture of colours, translated by myself, is published in the Philosophical Magazine for 1852. Maxwell's memoir on the Theory of Compound Colours is published in the Philosophical Transactions, vol. 150, p. 67.)