Fizjologia wysiłku i treningu fizycznego. Отсутствует
Чтение книги онлайн.

Читать онлайн книгу Fizjologia wysiłku i treningu fizycznego - Отсутствует страница 3

Название: Fizjologia wysiłku i treningu fizycznego

Автор: Отсутствует

Издательство: OSDW Azymut

Жанр: Медицина

Серия:

isbn: 978-83-200-5729-4

isbn:

СКАЧАТЬ typy komórek mięśni szkieletowych, a mianowicie:

      1. Komórki wolno kurczące się, tlenowe (ST, typ I).

      2. Komórki szybko kurczące się, tlenowo-glikolityczne (FTA, typ IIA).

      3. Komórki szybko kurczące się, glikolityczne (FTX, typ IIX).

      Czas od początku skurczu do skurczu maksymalnego w komórkach wolno kurczących się jest znacznie dłuższy niż w komórkach szybko kurczących się (ryc. 1.2).

      Komórki typu I wytwarzają ATP (adenozynotrifosforan) niemal wyłącznie na drodze przemian tlenowych, komórki typu IIA na drodze przemian tlenowych oraz beztlenowych, a komórki typu IIX niemal wyłącznie na drodze przemian beztlenowych. Włókna typu I i IIA są bogato unaczynione i zawierają dużo mioglobiny – barwnika wiążącego tlen, dlatego mają barwę czerwoną. Włókna typu IIX są ubogo unaczynione i zawierają jedynie niewielką ilość mioglobiny, dlatego ich kolor jest biały. Różnice pomiędzy poszczególnymi typami włókien wymieniono w tabeli 1.1.

      Rycina 1.2.

      Szybkość skurczu włókna szybko kurczącego się (typ II) oraz wolno kurczącego się (typ I). Czas od pobudzenia do osiągnięcia skurczu maksymalnego we włóknie szybko kurczącym się jest znacznie krótszy niż we włóknie wolno kurczącym się.

      Tabela 1.1

      Charakterystyka włókien w mięśniach szkieletowych

      Należy podkreślić, że odsetek poszczególnych typów włókien w mięśniach jest zdeterminowany genetycznie. Trening siłowy może powodować, że pewna liczba włókien typu IIX nabiera cech włókien typu IIA. Natomiast długotrwały trening wytrzymałościowy powoduje przekształcenie pewnej liczby włókien IIX we włókna typu IIA, tych zaś we włókna typu I.

      Uwaga! Liczba komórek mięśniowych nie ulega zwiększeniu w wyniku treningu! Zwiększenie masy mięśnia w procesie treningu siłowego następuje przez „dodawanie” nowych sarkomerów w już istniejącej komórce mięśniowej.

      1.1.1.2. Czynność skurczowa mięśnia

Mechanizm skurczu mięśnia

      W stanie spoczynku włókna aktyny i miozyny nie tworzą połączeń, a „głowa” miozyny jest ustawiona, jak wspomniano wyżej, pod kątem 90° w stosunku do trzonu cząsteczki. Pobudzenie motoneuronu powoduje depolaryzację błony komórkowej unerwianego miocytu. Depolaryzacja obejmuje też odcinki błony tworzące kanalik T. Depolaryzacja błony kanalika T powoduje uwolnienie jonów wapnia (Ca2+) ze zbiorników końcowych siateczki sarkoplazmatycznej. Jony te łączą się z podjednostką C troponiny, co powoduje przemieszczenie się tropomiozyny i w następstwie odkrycie na aktynie F miejsc wiązania dla „głowy” miozyny. W spoczynku z „głową” miozyny związany jest kompleks adenozynodifosforan (ADP) i reszta fosforanowa (Pi). Po związaniu z aktyną następuje odszczepienie od „głowy” reszty fosforanowej i w następstwie ugięcie „głowy” w stosunku do trzonu o 40°. Następnie od „głowy” odszczepiane jest ADP, co zwiększa ugięcie o 5° (a więc łącznie do 45°). Ugięcie „głowy” miozyny połączonej z aktyną F powoduje zbliżenie przeciwległych łańcuchów aktyny i nieznaczne skrócenie mięśnia. Jony Ca2+ uwolnione z SR są transportowane do jej kanalików poprzecznych za pomocą pompy Ca2+-ATPazy. Następnie do „głowy” miozyny przyłącza się adenozynotrifosforan (ATP). Powoduje to jej odszczepienie od aktyny. ATP ulega natychmiastowej hydrolizie do ADP i Pi, a uwolniona energia jest zużywana do przywrócenia spoczynkowego ustawienia „głowy” (tj. pod kątem 90°). Cykl ten powtarzany jest wielokrotnie, co powoduje skrócenie mięśnia.

Rodzaje skurczów mięśnia

      Skurcz, w czasie którego rośnie napięcie mięśnia, a jego całkowita długość nie ulega zmianie, nazywamy skurczem izometrycznym. Skurcz, w czasie którego nie następuje wzrost napięcia mięśnia, a zmienia się długość mięśnia, nazywamy skurczem izotonicznym. Skurcz, w czasie którego następuje zarówno wzrost napięcia, jak i skrócenie mięśnia, nazywamy skurczem auksotonicznym. Skurcze te występują najczęściej.

      Rycina 1.3.

      Skurcz pojedynczy, tężcowy niezupełny i tężcowy zupełny. Bodziec pojedynczy o sile co najmniej progowej powoduje skurcz mięśnia, po którym następuje pełen rozkurcz. Przy odpowiedniej częstości bodźców kolejny skurcz rozpoczyna się w fazie rozkurczu (a więc rozkurcz jest niezupełny) – jest to tzw. skurcz tężcowy niezupełny. Przy większej częstości bodźców mięsień jest pobudzany w fazie skurczu, co uniemożliwia wystąpienie fazy rozkurczu (skurcz tężcowy zupełny).

      Skurcze dzielimy również na pojedyncze, tężcowe niezupełne i tężcowe zupełne (ryc. 1.3).

      Po skurczu pojedynczym ma miejsce pełny rozkurcz. W czasie skurczu tężcowego niezupełnego szybkość pobudzania mięśnia, a w następstwie częstość skurczów pozwala na jego częściowy rozkurcz po każdym skurczu. Natomiast w czasie skurczu tężcowego zupełnego mięsień pozostaje w fazie ciągłego skurczu, a więc nie ma fazy rozkurczu. Siła skurczu tężcowego niezupełnego jest większa niż siła skurczu pojedynczego, natomiast siła skurczu tężcowego zupełnego jest większa niż siła skurczu tężcowego niezupełnego.

      Skurcz koncentryczny jest to skurcz izotoniczny, w czasie którego mięsień ulega skróceniu.

      Skurcz ekscentryczny jest to skurcz izotoniczny, w czasie którego, pomimo wzrostu napięcia, mięsień wydłuża się.

      Wysiłek statyczny jest to wysiłek, w czasie którego skurcz mięśni ma charakter izometryczny.

      Wysiłek dynamiczny jest to taki wysiłek, w czasie którego skurcz mięśni ma charakter izotoniczny.

Siła skurczu mięśnia

      Siła skurczu mięśnia zależy od następujących czynników:

      ● Liczby pobudzonych jednostek motorycznych (im więcej pobudzonych jednostek, tym większa siła skurczu).

      ● Przekroju włókna (im większa liczba sarkomerów, tym większa siła skurczu).

      ● Częstości pobudzeń (p. wyżej).

      ● Długości wyjściowej mięśnia. Mięsień rozwija największą siłę skurczu, gdy znajduje się stanie długości spoczynkowej (ryc. 1.4). Wtedy najwięcej „głów” miozyny może połączyć się z aktyną. W miarę rozciągania mięśnia liczba połączeń maleje, co zmniejsza siłę skurczu. Przy rozciągnięciu 3-krotnie większym od optymalnej (spoczynkowej) dochodzi do pęknięcia mięśnia.

      Rycina 1.4.

      Schemat przedstawiający zależność siły rozwijanej przez pojedyncze włókno mięśniowe od długości sarkomeru: a – stopień zachodzenia filamentów grubych i cienkich względem siebie jest optymalny (tzw. СКАЧАТЬ