Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу. Малкольм Фрэнк
Чтение книги онлайн.

Читать онлайн книгу Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - Малкольм Фрэнк страница 19

СКАЧАТЬ знаем, обзор может оказаться похожим на то, как вы учились водить, будучи подростком, и ваш дядя, откинув капот машины, объяснял, как все это работает. Некоторые уроки могут быть скучноватыми (например, «это карбюратор, это свечи зажигания»), но сейчас, пользуясь интеллектуальными системами на непрерывной основе, мы должны создавать и применять их в своих компаниях, чтобы добиться конкурентного преимущества, поэтому рабочие знания здесь очень важны.

      Дать определение новой машине

      Давайте начнем с простого определения, а затем немного его распространим.

      Интеллектуальная система совмещает в себе программное обеспечение (алгоритмы, деловой регламент, код машинного обучения, прогнозовая аналитика), комплектующее оборудование (серверы, датчики, мобильные устройства, возможность подключения), данные (контекстуализированные и в реальном времени) и человеческое участие (часто оценка или запросы).

      Может прозвучать как «куча оборудования, ПО и данных соединить вместе – и там произойдет чудо». Так что давайте вкратце пройдемся по трем ключевым атрибутам, делающим интеллектуальную систему такой особенной.

      • Программное обеспечение, которое учится. Программное обеспечение, составляющее центр новой машины, – это то, чего мы не видели никогда прежде. Впервые в истории человечества у нас есть инструмент, который может делать сам себя. ПО, способное к машинному обучению, со временем обновляет само себя. Система учится распознавать схемы и находить скрытые инсайты внутри данных – и все это, не будучи специально запрограммированным на то, что надо делать и где надо искать. Например, именно этим способом Uber узнает, как объединить правильного водителя с правильным пассажиром, а Facebook заполняет вашу персональную ленту новостей. В самих компаниях этим занимается всего несколько человек. И это было бы невозможно, поскольку в случае Facebook – это более миллиарда заходов пользователей на сайт в день1. Поэтому вместо людей за всеми и за каждой сессией следит машина, постоянно становясь еще умнее.

      • Мощные аппаратные возможности обработки данных. В последние несколько десятков лет мы видели, как мощность оборудования и технологий росла по экспоненте. Ни одна инновация в истории не улучшалась и не проникала во все с такой скоростью. Закон Мура (Moore’s Law), согласно которому число транзисторов на микросхеме (а значит, и его производительность) удваивается приблизительно каждые два года, продолжает действовать, хотя недавно отпраздновал 50-летний юбилей. Однако недавно он был турбирован облаком, которое позволяет сверхмощным компьютерам объединяться друг с другом. Для сравнения: у сильной машины может быть впечатляющее количество лошадиных сил, как, например, четыреста тридцать пять лошадиных сил под капотом Ford Mustang GT, но вы не можете склеить два «мустанга», чтобы удвоить скорость. В то время как один компьютер может получить доступ к множеству других и выдать молниеносный результат. Таким образом, каждый раз, пользуясь Google, Facebook или Amazon, вы подключаетесь к группе связанных, СКАЧАТЬ