Маленькая книга о черных дырах. Стивен Габсер
Чтение книги онлайн.

Читать онлайн книгу Маленькая книга о черных дырах - Стивен Габсер страница 5

Название: Маленькая книга о черных дырах

Автор: Стивен Габсер

Издательство: Питер

Жанр: Физика

Серия: New Science

isbn: 978-5-4461-1049-0

isbn:

СКАЧАТЬ мысль о том, что система Б покоится, нам кажется более естественной, потому что мы подсознательно всегда рассматриваем движение относительно Земли.)

      Рис. 1.1. Слева: пространство-время Минковского. Три наблюдателя из системы отсчета Б неподвижны, а три наблюдателя из системы А движутся вперед. Справа: другая перспектива пространства-времени Минковского, в которой наблюдатели из системы Б движутся назад, а наблюдатели из системы А покоятся.

      Получается, что наши интуитивные суждения об относительном движении исходят из здравого смысла, и стоит спросить себя: не можем ли мы из этих представлений извлечь какой-нибудь способ объяснения природы пространства и времени? Здесь нам на помощь приходит максвелловская теория электромагнетизма. Ведь из нее следует (кроме всего прочего), что если Алиса вытащит лазерную указку и пошлет лазерный импульс вперед, в сторону, в которую мчится ее поезд, и то же самое сделает Боб, то эти два лазерных луча полетят вперед с одинаковой скоростью.

      На первый взгляд, ничего особенного – но только на первый взгляд! Ведь, например, если мы разгоним наш поезд до 99 % скорости света (хотя в Америке, как всем известно, поезда ходят гораздо медленнее), то разве для Боба скорость луча, посланного по ходу поезда Алисой, не окажется равной почти двойной скорости света? Ведь Алиса мчится к Бобу со скоростью в 99 % световой, а ее лазерный луч мчится со скоростью света относительно нее – значит, измеренная Бобом скорость ее лазерного луча составит 199 % скорости света?

      Так вот, в соответствии с теорией электромагнетизма, этого не произойдет! Скорость луча, измеренная Бобом, будет в точности равна все той же постоянной скорости света, которую Алиса получит, измеряя движение того же импульса относительно себя.

      Как это может быть? Ответ заключается в том, что Алиса и Боб по-разному измеряют ход времени и длину. В подробностях эта процедура измерения выражается преобразованиями Лоренца – математическим описанием связи времени и длины в системе А с временем и длиной в системе Б. Преобразование Лоренца легко записать в терминах пространства-времени Минковского. До того как мы провели преобразования Лоренца (левая часть рис. 1.1), мы можем считать систему Б покоящейся, а систему А движущейся вперед. После выполнения преобразований Лоренца (правая часть рис. 1.1) система А становится покоящейся, а система Б движется назад! Преобразования Лоренца, таким образом, просто описывают смену точки зрения: от позиции Боба, который считает покоящейся свою систему отсчета, к позиции Алисы, для которой покоится как раз ее система.

      Главные следствия преобразований Лоренца – замедление времени и сокращение длины. Мы сначала попробуем объяснить замедление времени – это проще. Представьте, что в полдень пятницы вы садитесь в поезд на станции Принстон. Для удобства будем считать, что эта точка во времени и пространстве соответствует СКАЧАТЬ