ФИЗИЧЕСКАЯ ПРИРОДА АТМОСФЕРНЫХ ВИХРЕЙ. Научный доклад на соискание научной степени доктора физико-математических наук без защиты диссертации. Николай Николаевич Белов-Аманик
Чтение книги онлайн.

Читать онлайн книгу ФИЗИЧЕСКАЯ ПРИРОДА АТМОСФЕРНЫХ ВИХРЕЙ. Научный доклад на соискание научной степени доктора физико-математических наук без защиты диссертации - Николай Николаевич Белов-Аманик страница 1

СКАЧАТЬ еллектуальной издательской системе Ridero

      3

      Белов Николай Николаевич, кандидат педагогических наук,

      учитель физики Карачевской ООШ

      Козловского района Чувашской Республики

      ФИЗИЧЕСКАЯ ПРИРОДА АТМОСФЕРНЫХ ВИХРЕЙ

      Вначале рассчитаем динамичесчкое давление жидкости или газа плотности ρ на боковую поверхность герметически закрытого цилиндрического сосуда высотой h с радиусом оснований r, вращающегося стационарно и равномерно с угловой скоростью ω вне поля тяготения как твердое тело вокруг оси симмерии (см. Рис.1)

      Для расчета давления разобьем цилиндр на совокупность полых цилиндров одинаковой высоты h толщиной стенок dr, во много раз меньший r, тогда можно считать, что все точки выделенного полого цилиндра находятся на расстоянии r от оси. В выделенном объеме dv = 2πrdrh заключена жидкость или газ массой dm = ρ2πhrdr. Этой массе жидкости сообщает центростремительное ускорение сила давления слоя, находящегося на расстоянии r + dr от оси. Согласно второму закону Ньютона df = dmdυ/dt, т.к. dυ/dt = ωr.

      Динамическое давление, производимое выделенным слоем жидкости или газа на внешнюю боковую поверхность полого цилиндра dp = df/ds, где ds= 2πrh. – площадь боковой поверхности этого полого цилиндра.

      С учетом всех указанных выше равенств находим элементарное давление:

      dp=ρωrdr (1)

      Суммарное давление, производимое всеми слоями вращающейся жидкости найдем, взяв определенный интеграл:

      p = ρωrdr = 0,5ρ ωr. (2) Или, заменив в полученном выражении поизведение угловой скорости на радиус окружности через линейную скорость υ = ωr имеем:

      р = 0,5ρυ. (3)

      Выражения (2) и (3) выведены для случая, когда жидкость или газ целиком заполняют сосуд. Рассчитаем давление жидкости или газа толщиной потока. Рассмотрим два разных случая а) частицы вращаются с одинаковой угловой скоростью, тогда в выражении (2) следует изменить нижнюю границу интегрирования:

      р = ρωr dr = ρω0,5 (r+ r) (r- r). (4)

      Итак, в этом случае гидродинамическое давление прямо пропорционально плотности, квадрату угловой скорости, толщине потока (r- r) и радиусу кривизны среднего слоя – 0,5 (r+ r).

      Если частицы потока имеют одинаковую скорость, например, совершая отражение, давят на лопасти турбины Пельтона при трогании с места, тогда в выражении (1) угловую скорость выразим

      через линейную скорость и радиус кривизны ω = υ/r. При взятии интеграла (2) вынесем за знак интеграла плотность и линейную скорость. Давление в этом случае будет:

      p = ρυ= ρυln. (5)

      Из этого выражения видно, что гидродинамическое давление прямо пропорционально плотности, квадрату линейной скорости и натуральному логарифму отношения радиусов кривизны поверхностей слоев, между которыми заключен поток. Заметим, что математический запрет r не равен нулю имеет реальный физический смысл – изменение импульсов частиц потока не происходят моментально и точно по ломаным линиям, а по сопряженным.

      Сила давления на неподвижную лопасть турбины:

      F = s ρυln. (8)

      ,где s – площадь проекции рабочей части лопасти на пепендикулярную к начальной скорости частиц потока.

      Если лопасть турбины наберет скорость υ относительно земли, то поток приближается к лопасти со скоростью υ – υ, то именно квадрату этой относительной скорости прямо пропорциональна сила давления

      F = s ρ (υ- υ) ln. (9)

      Мощность турбины равна изменению кинетической энергии потока за единицу времени:

      N = F υ = s ρ υ (υ- υ) ln. (10)

      ВВЕДЕНИЕ ПОНЯТИЯ ЦЕНТРОСТРЕМИТЕЛЬНО-ВЫТАЛКИВАЮЩАЯ – ГИДРО-АЭРОДИНАМИЧЕСКАЯ АРХИМЕДОВА СИЛА

      На более удаленную и перпендикулярную к радиусу r грань небольшого тела, находящегося во вращающемся потоке (см. Рис. 2) действует большее динамическое давление f=0,5ρωr s- эта сила давления больше, чем на противоположную грань

      f= 0,5 ρωr s, а на другие попарно-противоположные грани действуют одинаковые силы давления, попарно компенсирующие друг-друга, поэтому результирующая всех сил давлений направлена к оси вращения и является гидродинамической Архимедовой силой:

      F = ρω (r +0,5H) Hs. (11)

      выражение, стоящее в скобках —это радиус, проведенный к центру масс тела, а высота тела равна разности радиусов Н= r- r;

      m =ρHs – масса вытесненной жидкости;

      ω (r +0,5Н) – центростремительное ускорение частиц, окружающих тело.

      Итак, СКАЧАТЬ