СКАЧАТЬ
чем удвоенное 3, что всюду подобным образом найденное соотношение между какими бы то ни было двумя величинами может быть дано в бесчисленном множестве других величин, находящихся в том же отношении, и что сущность трудности не изменяется, рассматривается ли три, четыре или большее число таких величин, так как нужно отыскивать каждое из соотношений по отдельности, не обращая внимания на все другие. Далее, я замечаю, что хотя для данных величин 3 и 6 я нахожу третью, последовательно пропорциональную им, т. е. 12, но что найти для двух данных крайних величин, а именно 3 и 12, промежуточную, т. е. 6, не является столь же легким делом. Обдумав это, можно ясно увидеть, что здесь мы имеем дело с трудностью совсем другого рода, чем предшествующие, ибо для нахождения промежуточной пропорциональной необходимо в одно и то же время мыслить о двух крайних и об отношении между ними, чтобы получить путем их деления некую новую величину; это действие очень отличается от того, когда для двух данных величин отыскивается третья последовательно пропорциональная. Следуя далее, я рассматриваю, одинаково ли легко найти промежуточные пропорциональные величины 6 и 12 для двух данных крайних 3 и 24. Здесь приходится сталкиваться с трудностью иного рода и гораздо более серьезной, чем предшествовавшие, ибо здесь нужно думать не только об одной или двух величинах одновременно, но о трех, для того чтобы найти для них четвертую. Можно пойти еще дальше и для данных только 3 и 48 узнать, не будет ли еще труднее найти одно из промежуточных и пропорциональных им чисел 6, 12, 24, как это может показаться с первого взгляда. Но тотчас же обнаружится, что эту трудность можно расчленить и упростить, если найти сначала лишь одно промежуточное пропорциональное число между 3 и 48, именно 12, затем другое промежуточное пропорциональное между 3 и 12, а именно 6, другое между 12 и 48, а именно 24, и таким образом привести ее ко второму роду трудности, который мы уже изложили.
Из всего предшествующего мы видим, как можно прийти к познанию одной и той же вещи различными путями, из которых один более труден и более темен, чем другой. Например, если для отыскания четырех последовательно пропорциональных чисел – 3, 6, 12, 24 – даются два последовательных числа – 3 и 6, или 6 и 12, или 12 и 24, – то для того, чтобы найти посредством их остальные, действие производится очень легко; и в этом случае можно сказать, что искомое соотношение исследуется прямо. Но если дается по два числа через одно, а именно 3 и 12 или 6 и 24, для того чтобы найти по ним другие, можно сказать, что трудность исследуется косвенно первым способом. Таким же образом, если даются два крайних числа 3 и 24, чтобы найти для них промежуточные 6 и 12, то в этом случае трудность исследуется косвенно вторым способом. Я мог бы следовать таким же образом и дальше и извлечь из одного этого примера множество еще и других следствий, но тех, которые я уже вывел, будет достаточно для того, чтобы читатель видел, что я разумею под положением, выведенным непосредственно или косвенно, и знал, что простейшие и элементарнейшие вещи, будучи поняты, помогут многое найти
СКАЧАТЬ