Вирусы. Драйверы эволюции. Друзья или враги?. Майкл Кордингли
Чтение книги онлайн.

Читать онлайн книгу Вирусы. Драйверы эволюции. Друзья или враги? - Майкл Кордингли страница 17

СКАЧАТЬ включаются в хромосому, предпочтительно вблизи от этих генов. Работа авторов показывает большие возможности фагов и горизонтальной передачи генов в эволюции бактерий и образовании их новых видов. Приобретение новой генетической информации, несомненно, снабдило кишечную палочку адаптивными возможностями, которые позволили ей занять экологическую нишу, недоступную ее предкам.

      Эгоизм – движущая сила адаптивной эволюции

      Плотная популяция микробов и фагов в морских водах предлагает природе плодородное поле для обмена генетической информацией и экспериментов. Цианобактерии, одна из самых разнообразных бактериальных групп, успешно размножаются как на суше, так и в воде. Они уникальны, так как это единственные бактерии, способные к фотосинтезу. Подобно высшим растениям они продуцируют энергию и органические строительные блоки, используя свет и двуокись углерода, высвобождая при этом кислород. Имея диаметр всего 0,5 микрометра, бактерия Prochlorococcus является одним из самых мелких организмов, обладающих способностью к фотосинтезу. Эта бактерия ускользала от внимания исследователей до восьмидесятых годов прошлого века, когда океанографические научные суда были оснащены флоуцитометрами, которые и позволили обнаружить прохлорококк. Прохлорококк – это самый многочисленный фотосинтезирующий организм мирового океана и, вероятно, вообще нашей планеты. Прохлорококк и его ближайший сородич синехококк являются доминирующими фотосинтезирующими видами пикопланктона в поверхностных слоях океана, где достаточно света для поддержания процесса фотосинтеза. Вместе эти два вида осуществляют 25 % всего фотосинтеза на Земле (Partensky, Hess, Vaulot, 1999; Field et al., 1998). Фотосинтезирующие механизмы этих бактерий подобны механизму фотосинтеза растений, растущих в наших садах. В самом деле, вполне вероятно, что цианобактерии произошли от предшественников хлоропластов, органелл, находящихся в эукариотических клетках высших растений.

      Фотосинтезирующий аппарат хлоропласта состоит из двух фотосистем: фотосистемы I и фотосистемы II (ФСI и ФСII), которые представляют собой улавливающие свет белковые комплексы и светочувствительные пигменты, соединенные между собой цепями переноса электронов. Энергия, высвобождаемая при движении электрона между этими двумя фотосистемами, используется для перемещения через мембраны протонов (ионов водорода). Эта протонная помпа продуцирует АТФ, источник энергии клетки, и дает энергию для протекания цикла Кальвина, в результате которого синтезируется глицеральдегид-3-фосфат, главный строительный блок для всех структур клетки. Главные действующие лица фотосинтеза – светочувствительные пигменты ФСI и ФСII, причем эти пигменты проявляют различную чувствительность к свету в зависимости от его интенсивности и длины волны. Разные штаммы прохлорококка имеют разные фотосистемы, которые адаптированы к функционированию на разных глубинах моря (Moore, Rocap, Chisholm, 1998). Водоросли, обитающие на больших СКАЧАТЬ