The Tao of Physics. Fritjof Capra
Чтение книги онлайн.

Читать онлайн книгу The Tao of Physics - Fritjof Capra страница 7

Название: The Tao of Physics

Автор: Fritjof Capra

Издательство: HarperCollins

Жанр: Прочая образовательная литература

Серия:

isbn: 9780007378289

isbn:

СКАЧАТЬ

      In practice, of course, the three stages are not neatly separated and do not always occur in the same order. For example, a physicist may be led to a particular model by some philosophical belief he (or she) holds, which he may continue to believe in, even when contrary experimental evidence arises. He will then—and this happens in fact very often—try to modify his model so that it can account for the new experiments. But if experimental evidence continues to contradict the model he will eventually be forced to drop it.

      This way of basing all theories firmly on experiment is known as the scientific method and we shall see that it has its counterpart in Eastern philosophy. Creek philosophy, on the other hand, was fundamentally different in that respect. Although Creek philosophers had extremely ingenious ideas about nature which often come very close to modern scientific models, the enormous difference between the two is the empirical attitude of modern science which was by and large foreign to the Creek mind. The Greeks obtained their models deductively from some fundamental axiom or principle and not inductively from what had been observed. On the other hand, of course, the Creek art of deductive reasoning and logic is an essential ingredient in the second stage of scientific research, the formulation of a consistent mathematical model, and thus an essential part of science.

      Rational knowledge and rational activities certainly constitute the major part of scientific research, but are not all there is to it. The rational part of research would, in fact, be useless if it were not complemented by the intuition that gives scientists new insights and makes them creative. These insights tend to come suddenly and, characteristically, not when sitting at a desk working out the equations, but when relaxing, in the bath, during a walk in the woods, on the beach, etc. During these periods of relaxation after concentrated intellectual activity, the intuitive mind seems to take over and can produce the sudden clarifying insights which give so much joy and delight to scientific research.

      Intuitive insights, however, are of no use to physics unless they can be formulated in a consistent mathematical framework, supplemented by an interpretation in plain language. Abstraction is a crucial feature of this framework. It consists, as mentioned before, of a system of concepts and symbols which constitute a map of reality. This map represents only some features of reality; we do not know exactly which these are, since we started compiling our map gradually and without critical analysis in our childhood. The words of our language are thus not clearly defined. They have several meanings, many of which pass only vaguely through our mind and remain largely in our subconscious when we hear a word.

      The inaccuracy and ambiguity of our language is essential for poets who work largely with its subconscious layers and associations. Science, on the other hand, aims for clear definitions and unambiguous connections, and therefore it abstracts language further by limiting the meaning of its words and by standardizing its structure, in accordance with the rules of logic. The ultimate abstraction takes place in mathematics where words are replaced by symbols and where the operations of connecting the symbols are rigorously defined. In this way, scientists can condense information into one equation, i.e. into one single line of symbols, for which they would need several pages of ordinary writing.

      The view that mathematics is nothing but an extremely abstracted and compressed language does not go unchallenged. Many mathematicians, in fact, believe that mathematics is not just a language to describe nature, but is inherent in nature itself. The originator of this belief was Pythagoras who made the famous statement ‘All things are numbers’ and developed a very special kind of mathematical mysticism. Pythagorean philosophy thus introduced logical reasoning into the domain of religion, a development which, according to Bertrand Russell, was decisive for Western religious philosophy:

      The combination of mathematics and theology, which began with Pythagoras, characterized religious philosophy in Greece, in the Middle Ages, and in modern times down to Kant … In Plato, St Augustine, Thomas Aquinas, Descartes, Spinoza and Leibniz there is an intimate blending of religion and reasoning, of moral aspiration with logical admiration of what is timeless, which comes from Pythagoras, and distinguishes the intellectualized theology of Europe from the more straightforward mysticism of Asia.7

      The ‘more straightforward mysticism of Asia’ would, of course, not adopt the Pythagorean view of mathematics. In the Eastern view, mathematics, with its highly differentiated and well defined structure, must be seen as part of our conceptual map and not as a feature of reality itself. Reality, as experienced by the mystic, is completely indeterminate and undifferentiated.

      The scientific method of abstraction is very efficient and powerful, but we have to pay a price for it. As we define our system of concepts more precisely, as we streamline it and make the connections more and more rigorous, it becomes increasingly detached from the real world. Using again Korzybski’s analogy of the map and the territory, we could say that ordinary language is a map which, due to its intrinsic inaccuracy, has a certain flexibility so that it can follow the curved shape of the territory to some degree. As we make it more rigorous, this flexibility gradually disappears, and with the language of mathematics we have reached a point where the links with reality are so tenuous that the relation of the symbols to our sensory experience is no longer evident. This is why we have to supplement our mathematical models and theories with verbal interpretations, again using concepts which can be understood intuitively, but which are slightly ambiguous and inaccurate.

      It is important to realize the difference between the mathematical models and their verbal counterparts. The former are rigorous and consistent as far as their internal structure is concerned, but their symbols are not directly related to our experience. The verbal models, on the other hand, use concepts which can be understood intuitively, but are always inaccurate and ambiguous. They are in this respect not different from philosophical models of reality and thus the two can very well be compared.

      If there is an intuitive element in science, there is also a rational element in Eastern mysticism. The degree to which reason and logic are emphasized, however, varies enormously from one school to the other. The Hindu Vedanta, or the Buddhist Madhyamika, for example, are highly intellectual schools, whereas Taoists have always had a deep mistrust of reason and logic. Zen, which grew out of Buddhism but was strongly influenced by Taoism, prides itself on being ‘without words, without explanations, without instructions, without knowledge’. It concentrates almost entirely on the experience of enlightenment and is only marginally interested in interpreting this experience. A well known Zen phrase says The instant you speak about a thing you miss the mark.’

      Although other schools of Eastern mysticism are less extreme, the direct mystical experience is at the core of all of them. Even those mystics who are engaged in the most sophisticated argumentation never see the intellect as their source of knowledge but use it merely to analyse and interpret their personal mystical experience. All knowledge is firmly based on this experience, thus giving the Eastern traditions a strong empirical character that is always emphasized by its proponents. D. T. Suzuki, for example, writes of Buddhism:

      Personal experience is … the foundation of Buddhist philosophy. In this sense Buddhism is radical empiricism or experientialism, whatever dialectic later developed to probe the meaning of enlightenment-experience.8

      Joseph Needham repeatedly brings the empirical attitude of Taoists into prominence in his work Science and Civilisation in China and finds that this attitude has made Taoism the basis of Chinese science and technology. The early Taoist philosophers, in Needham’s words, ‘withdrew into the wilderness, the forests and mountains, there to meditate upon the Order of Nature, and to observe its innumerable manifestations’.9 The same spirit is reflected in the Zen verses,

      He who would understand the meaning of Buddha-nature Must watch for the season and the causal relations.10

СКАЧАТЬ