Название: SuperBetter: How a gameful life can make you stronger, happier, braver and more resilient
Автор: Jane McGonigal
Издательство: HarperCollins
Жанр: Личностный рост
isbn: 9780008106355
isbn:
Self-efficacy is increased anytime you learn a new skill or master a new challenge. So let’s increase your self-efficacy right now—with another quest!
QUEST 11: The Power Breath
You’ve probably tried deep, slow breathing to calm yourself down. But there’s actually a more useful breathing technique, one that can reduce stress, decrease pain, increase concentration, halt migraines, and prevent panic attacks.
What to do: Breathe in while you count slowly to 4. Exhale while you count to 8.
In for 4, out for 8. Repeat for at least one minute. This is a bit more challenging than it sounds! The trick is to always exhale for twice as long as you inhale.
Give it a try right now. You don’t have to do a full minute right away. Try to do it just once: in for 4, out for 8. Got it?
Okay, now try to do it twice in a row.
Good? Now try three in a row. If you can, count a little bit slower, and draw the breath out even more.
Excellent! You’ve mastered the trick. When you can keep this up for at least one full minute, you will be able to help yourself feel better, almost immediately, in many different stressful or painful situations.
Why it works: Breathing at this rhythm increases your heart rate variability,3 the slight differences in the length of time between your heartbeats, from one to the next.
The more variation, the better. In the long term, high heart rate variability protects against stress, anxiety, inflammation, and pain. In the short term, increased heart rate variability has a huge impact on your nervous system. It shifts your body from what scientists call sympathetic stimulation (which, when activated by stress, pain, or anxiety, triggers a fight-or-flight mode) to parasympathetic stimulation (a calm-and-connect mode).4
Just by changing how you breathe for one minute, you can shift your entire nervous system from a stressful state to a highly relaxed state. Muscles relax, heart rate decreases, digestion improves, and state of mind improves. If you’re feeling any kind of bad, this powerful shift is sure to help.
But you’re not finished with this quest yet! I want you to think of two different situations where this power breathing technique could help you feel better, immediately. For example, I personally use this technique to stop migraines in their tracks, and to calm my anxiety during turbulence on flights. A collaborator of mine at Nike uses it to relieve muscle cramps after tough workouts. SuperBetter players have reported using the power breath technique to control their tempers with their kids, to battle the nausea of morning sickness, to fight insomnia, before going into a stressful meeting, and even to put themselves in the mood to make love. How will you use it?
What to do: Predict two situations in your life where power breathing for one minute could help. Make a decision now to use this technique the next time you find yourself in that situation.
Quest complete: That’s it—congratulations! You’ve increased your self-efficacy when it comes to battling stress, anxiety, discomfort, or pain. You’ve learned a new skill, and you’ve anticipated two specific problems it can help you solve. You’ve got a superpower—and you know exactly how and when to use it.
Hopefully, you’re starting to see how self-efficacy is created—and how it can supercharge your ability to do what’s difficult. However, there’s still one puzzling thing about the Re-Mission clinical trial results. It makes sense that participants in the study would develop more confidence and belief in their video game skills by playing Re-Mission. Playing a video game makes you better at that particular game and probably other games as well. But how did confidence in their ability to beat a video game translate into confidence to beat cancer in real life? It’s a hell of a lot harder to win the battle against a real life-threatening disease than it is to destroy virtual bad guys on a computer screen.
To solve this mystery, we need to turn to the neuroscience of video games. Because it turns out that while there are many ways to increase confidence in individual skills, nothing primes the brain for general self-efficacy—or the belief that you have the ability to conquer any problem you put your mind to—faster or more reliably than video games.
Video games create a rush in the brain as pleasurable and powerful as intravenous drugs. It was the first major breakthrough in the neuroscience of gaming, and it was rather shocking. The year was 1998, and a group of British scientists had just found that playing video games leads to a massive increase in the amount of dopamine, the “pleasure” neurotransmitter, in the brain.5 To their astonishment, they found that the increase in dopamine from game play was equal to the boost experienced when scientists injected amphetamines intravenously into the same study participants.
Games impact the brain in nearly an identical fashion to highly addictive drugs?! On the face of it, this finding might seem alarming—particularly given that, depending on the study, anywhere from 1 to 8 percent of video game players consider themselves at least periodically “addicted” to their favorite games.6 (The most common percentage reported in these studies is 3 percent; in Chapter 4 we’ll look at the factors that can lead to excessive game play and the most effective techniques for treating it.) Indeed, if you’re already familiar with the neurotransmitter dopamine, you’ve probably heard about it in the context of addiction. The pleasurable effects of many drugs, from nicotine to cocaine, are thought to stem from the large amount of dopamine they release in the mesolimbic pathways, the “reward circuitry” of the brain.
But the mesolimbic pathways are involved in many brain processes, not just pleasure and addiction. Dopamine in this region also stimulates memory, motivation, learning, emotion, and desire. In fact, for the vast majority of people, in the course of ordinary everyday life, increased dopamine in the reward circuitry is not a sign of addiction. More commonly, it’s a sign of increased motivation and determination.7
Here’s how it works. Every time you consider a possible goal, your brain conducts a split-second, unconscious cost-benefit analysis of whether it’s worth the effort to try to achieve it.8 How you conduct this analysis depends less on the facts of the situation than on how much dopamine is present in your brain.
When you have high dopamine levels in the reward circuitry, you worry less about the effort required, and you find it easier to imagine and predict success. This translates into higher determination and lower frustration in the face of setbacks. Meanwhile, when dopamine runs low in the reward circuitry—something that happens during a period of clinical depression, for example—you weigh more heavily the effort required, often magnifying it, and you discount the importance of your goals.9 You also tend to anticipate failure rather than success, which can lead you to avoid challenges altogether.10
Obviously, then, when you’re tackling a new goal or facing a tough obstacle, it’s a huge benefit to have high levels of dopamine. And the benefit extends beyond motivation and determination. High dopamine levels in the reward circuitry are also associated with faster learning and better performance.11 That’s because when we’re goal-oriented, we pay more attention to what we’re doing. We also respond more quickly and effectively to feedback, which makes it easier to learn and improve. This is the neurological basis of self-efficacy: СКАЧАТЬ