Автор: Андрей Дибров
Издательство: Издательские решения
Жанр: Компьютеры: прочее
isbn: 9785449389770
isbn:
Критические ошибки при разработке нейросетевой системы
Рассмотрим, на примере как допускаются ошибки при тестировании нейросети. Если у вас нет программы «NeuroSolutions 6», то пропустите дальнейшее описание работы с ней, а рассмотрите результаты и сделанные выводы. В этой книге я не буду рассматривать создание системы на основе «NeuroSolutions». Хотя в принципе, автоматическая нейросетевая система реализована и на основе данного продукта.
Отметим, что следует понимать разницу между обучением и тестированием. Обучать нейросеть можно на любых примерах даже, некорректных для тестового множества – ведь обучение мы проводим на событиях, которые уже произошли. Данный пример взят из реальной жизни. Данный способ работы с нейросетями продавался в интернете. Позиционировался как система, которая дает 80—90% прибыльных сделок. Причем продавец, мне кажется, искренне заблуждался в идеальной результативности данного способа подготовки нейросети. Я делаю этот вывод из того, что ошибка возникала на стадии тестирования отклика сети.
Итак, сначала модернизируем и скомпилируем скрипт для получения исторических данных.
//+ – — – — – — – — – — – — – — – — – — – — – — – — – — – +
//| History.mq4 |
//| Copyright © 2009, Andrey Dibrov. |
//+ – — – — – — – — – — – — – — – — – — – — – — – — – — – +
#property copyright «Copyright © 2009, Andrey Dibrov.»
int file=FileOpen («history. csv», FILE_CSV|FILE_READ|FILE_WRITE,»;»);
//+ – — – — – — – — – — – — – — – — – — – — – — – — – — – +
//| Script program start function |
//+ – — – — – — – — – — – — – — – — – — – — – — – — – — – +
void OnStart ()
{
// – —
FileWrite (file,«Open; OpenD; HighD; LowD; CloseD; Max; Min; Date»);
if (file> 0)
{
СКАЧАТЬ