Политическая наука №1 / 2018. Коллектив авторов
Чтение книги онлайн.

Читать онлайн книгу Политическая наука №1 / 2018 - Коллектив авторов страница 9

СКАЧАТЬ печальная, но не безнадежная. Работы, в которых есть баланс между мышлением и статистическими методами, существуют. Доказательством являются предыдущие обладатели премии Карла Дойча21 и многие другие исследователи, такие как Аренд Лейпхарт и Рональд Инглхарт. Жозеп Коломер [Colomer 2007] и Бернард Грофман указали на ограниченный набор методологий, которые могут быть использованы в социальных науках по сравнению с другими науками. Многие социальные исследователи точно определяют специфические недостатки неверно примененных и неверно интерпретированных статистических методов22. Однако этого недостаточно, чтобы исправить статистические методы. Мы должны также расширить разумное использование визуализации и задействовать «мыслительную» ногу. Джеймс МакГрегор [McGregor, 1993] и я [Taagepera, 2008, p. 14–22] показали, как и почему базовые законы естествознания ни за что не удалось бы открыть, используй мы только самые совершенные статистические методы. Не ожидайте большего и в социальных науках23.

      Уважаемые коллеги, практикуйте качественные методы в политологии с небольшим использованием цифр, и да пребудет с вами мир. Если вы хотите использовать количественные методы, попробуйте практиковать подлинную количественную науку, которая пытается ходить на двух ногах. Но избегайте использования фальшивой количественной науки, которая скачет на одной ноге. Как это можно сделать без какой-либо подготовки и поддержки? Я написал две книги на эту тему. Они могут помочь.

      Первой была «Сделаем социальные науки более научными: потребность в предсказательных моделях» [Taagepera, 2008]. В ней есть такие главы, как «Физики умножают, социальные исследователи складывают – даже когда что‐то не складывается» и «Почему большинство цифр, опубликованных в социальных науках, мертвы изначально».

      Но моим студентам также не хватало и практического учебника по построению логических моделей. У студентов должна быть постоянная практика до того момента, пока они не приобретут определенных навыков в этой области, которые затем смогут использовать в жизни. Поэтому я написал книгу «Логические модели и базовая способность к количественному мышлению в социальных науках» [Taagepera, 2015], которая имеется в свободном доступе в Интернете. В этой книге мало математики за пределами арифметики. Построение логических моделей требует прежде всего смелости быть простым и критического ума, чтобы спросить: «Но может ли это быть так?»

      Я использую эту книгу при работе как со студентами, так и с докторантами в Калифорнии и в Эстонии. Многие профессора в области социальных наук могут извлечь из нее выгоду. Работа «Голоса ради мест. Логические модели избирательных систем» [Shugart, Taagepera, 2017] систематически заимствует данный подход. Это та редкая действительно научная книга о политике, которая способна предложить методологический стандарт для всей социальной науки.

      Поймите правильно: во многом история социальных наук – это история успеха. Они достигли значительного прогресса в качественном понимании общества. Статистические методы также очень нужны, СКАЧАТЬ



<p>21</p>

Габриель Алмонд, Жан Лапонс, Хуан Линц, Чарльз Тилли, Джованни Сартори, Альфред Степан, Пиппа Норрис.

<p>22</p>

Гэри Кинг и его коллеги [King, Tomz, Wittenberg, 2000] внесли вклад в понимание и представление о статистическом анализе. Герд Гигеренцер [Gigerenzer, 2004] был обеспокоен «бездумной статистикой» и вместе с коллегами [Gigerenzer, Kraus, Vitouch, 2004] разоблачил бессодержательный «ритуал нулевой гипотезы», который еще ранее подвергался критике Джеффом Джиллом [Gill, 1999]. Николас Лонгфорд [Longford, 2005] полагал, что большинство современных исследований, использующих статистические методы, – «свалка необоснованной уверенности». Кристофер Ашен [Achen, 2005] предлагал выбросить на свалку истории «мусорные» нелинейные пробит-модели. Исследования Бернарда Киттела [Kittel, 2006] и Киттела и Виннера [Kittel, Winner 2005] показали, что различные статистические подходы к одним и тем же данным могут превращать некоторые факторы, выглядящие «чрезвычайно значимыми», в незначимые. Филипп Шродт [Schrodt, 2014] составил список семи смертных грехов количественного политического анализа. Валентайн и его коллеги [Valentine, 2015] показали, как можно описывать данные «без повсеместного использования p-value».

<p>23</p>

Большие надежды на развитие количественных исследований в области политологии возлагались на движение Empirical Implications of Theoretical Models (EITM). Оно возникло в 2001 г. и проводило ежегодные летние школы. Можно отметить похвальное стремление к «интеграции теоретической модели развития с эмпирической оценкой». Их определение «теоретических моделей» отличается от моего собственного, т.е. наши пути не пересекаются. Когда участники движения EITM установят их первое взаимоотношение вида С=42 года/N 2 или хотя бы хороший эмпирический пример SA/SB=(VA/VB)3, тогда я обращу более пристальное внимание на то, что означает их замысловатая методологическая терминология.