Автор: Коллектив авторов
Издательство: Агентство научных изданий
Жанр: Учебная литература
isbn: 978-5-248-00680-9
isbn:
Тема, заявленная в названии данной работы, имеет два исследовательских фокуса. Первый – связан с содержательной проблемой: как вложение ресурсов в изменение «правил игры» влияет на эффективность производства благ в общественной системе? Второй – связан с «опытом математического моделирования»: особенностями формальной структуры модели, возможностями аналитических и вычислительных техник. Мы выберем промежуточный путь, связанный с ответом на вопрос о реализации важных, с нашей точки зрения, теоретических предпосылок в процессе построения математической модели и ее анализа. Полученные результаты, как мы при этом надеемся, отнюдь не являются «иллюстративными», призванными лишь продемонстрировать возможности формальной аналитической стратегии в рамках «заданной темы». В то же время эти результаты не будут в полной мере и в полном объеме вписаны в существующую теоретическую традицию. Сколько-нибудь существенный обзор изучения связи между перераспределением и эффективностью – в широчайшем спектре от работ «теоретико-модельных» [напр., Acemoglu, Egorov, Sonin, 2013] до узко эмпирических [напр., Coates, Heckelman, 2003], потребовал бы отдельной статьи.
В политологии построение математической модели – это задача одновременно и креативная, и лингвистическая. Слово «креативный» здесь понимается в буквальном смысле – рядом с имеющимся политическим миром создается новая вселенная, которая лишь отчасти, с очень большими упрощениями, воспроизводит реальность. Особенность этой вселенной в том, что законы ее существования определены очень жестко, четко и явно – в виде набора математических формул. Как писал М. Фиорина, «в тщательно формализованной модели все карты на столе» [Fiorina, 1975, p. 137]. Чтобы изучение этого искусственного и простого, но вполне самостоятельного мира дало нам какое‐то новое знание о реальной действительности, требуется выполнение нескольких условий. Одно из главных – соответствие между математическими выражениями, определяющими жизнь модельного мира, и теоретическими представлениями о политике, определяющими авторское понимание рассматриваемой содержательной проблемы. Собственно «лингвистическая» задача состоит в переводе вербальных представлений о политике на формальный язык, а затем, после аналитического и вычислительного исследования – «обратный перевод». Мы начнем с четкой формулировки «исходного текста»; сегодня наши карты на столе таковы (табл. 1).
Таблица 1
Исходные положения
Последний пункт мы акцентируем особо. С нашей точки зрения, время представляет собой фундаментальный для понимания политики параметр. Этот момент существенно недооценен, в том числе и представителями неоинституциональной школы, в русле которой выдержан наш подход. Динамический характер представляемой нами математической модели – не просто особенность «формального дизайна», но попытка отразить сущностную черту анализируемых процессов.
Вторая математическая особенность модели, на которую мы хотели бы обратить внимание сразу – присутствие отдельных акторов, принимающих решения. Каждый из них выбирает между двумя базовыми альтернативами, или поведенческими стратегиями. Первая состоит в том, чтобы производить СКАЧАТЬ
28
[Олсон, 1998, c. 75].