Теория игр в комиксах. Айван Пастин
Чтение книги онлайн.

Читать онлайн книгу Теория игр в комиксах - Айван Пастин страница 5

СКАЧАТЬ молчание;

      Алан сохраняет молчание, и Бен признается;

      Алан признается, и Бен признается.

      «Дилемма заключенных» может быть представлена в стратегической форме, при которой каждый ряд матрицы представлял бы возможный выбор Алана, а каждая колонка – возможный выбор Бена. На пересечениях каждого ряда и колонки мы обозначим выигрыши каждого игрока: в данном случае это будет срок заключения.

      Если Алан и Бен сохранят молчание, то оба получат срок в один год за угон автомобиля. Это отрицательный расклад, поэтому их выигрыши также в минусе (Алан: –1, Бен: –1). Если оба преступника сознаются, каждый сядет в тюрьму на 10 лет (А – 10, Б – 10).

      Заключенные понимают, как работает эта матрица, и знают, что имеют дело с одной и той же матрицей.

      Это пример игры с одновременными ходами. Даже если заключенные не принимают решения синхронно, мы все равно можем назвать их одновременными, потому что игроки находятся в разных комнатах и ни один из них в момент принятия своего решения не знает, как будет действовать другой.

      Однако заметьте, что, воспринимая эту дилемму как игру в стратегической форме, мы не говорим о возможном исходе. Мы просто обозначаем все потенциально возможные итоги, будь они разумны или нет, и записываем выигрыши, которые игроки получили бы, если бы место имел именно такой исход.

      Теперь, когда мы записали нашу задачу в стратегической форме, мы можем приступить к анализу возможного результата.

      Очевидно, если бы Алан и Бен вместе придумали бы свою версию произошедшего, они смогли бы сохранить молчание и попали бы в тюрьму всего на один год.

      Но этот вариант не входит в систему равновесия. Для Алана стратегия «сознаться» строго доминирует над стратегией «молчать»: всегда лучше сознаться, несмотря на его ожидания относительно действий Бена.

      Точно так же и для Бена оптимальной стратегией было бы признание, вне зависимости от его ожиданий относительно действий Алана.

      В ситуации равновесия Нэша в данной дилемме оба заключенных признаются. Стандартный способ записи этого исхода таков:

{признание, признание}

      Это значит, что игрок, чьи выигрыши записаны в матрице в строку (Алан), сделал выбор в пользу признания, как и игрок, чьи выигрыши записаны в колонку (Бен). В равновесии оба заключенных получают по 10 лет тюремного срока.

      Эффективность по Парето

      Интересно, можно ли сказать, что равновесие Нэша в «Дилемме заключенных» Парето-эффективно? Исход игры можно назвать Парето-эффективным, если больше не существует ни одного возможного исхода, при котором один участник находился бы в лучших условиях, а другой – в худших. Это понятие распределительной эффективности названо в честь итальянского экономиста Вильфредо Парето СКАЧАТЬ