Удивительная логика. Д. А. Гусев
Чтение книги онлайн.

Читать онлайн книгу Удивительная логика - Д. А. Гусев страница 13

Название: Удивительная логика

Автор: Д. А. Гусев

Издательство: ЭНАС

Жанр: Философия

Серия: О чем умолчали учебники

isbn: 978-5-91921-215-7

isbn:

СКАЧАТЬ и квартирные кражи.

      Либо школьник, либо спортсмен (Сложение и умножение понятий)

      Помимо рассмотренных нами логических операций ограничения, обобщения, определения и деления понятия, существуют еще две важные операции. Это сложение и умножение понятий.

      Сложение понятий – это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объемом, охватывающим собой все элементы объемов исходных понятий. Например, при сложении понятий школьник (Ш) и спортсмен (С) образуется новое понятие, в объем которого входят как все школьники, так и все спортсмены. Результат сложения понятий, часто называемый логической суммой, на схеме Эйлера изображается штриховкой (рис. 15).

      Умножение понятий – это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объемом, охватывающим собой только совпадающие элементы объемов исходных понятий. Например, при умножении понятий школьник (Ш) и спортсмен (С) образуется новое понятие, в объем которого входят только школьники, являющиеся спортсменами, и спортсмены, являющиеся школьниками. Результат умножения понятий, часто называемый логическим произведением, на схеме Эйлера изображается штриховкой (рис. 16).

      Мы привели примеры сложения и умножения понятий, которые находятся между собой в отношении пересечения: школьник и спортсмен. При других отношениях между понятиями результаты сложения и умножения (логическая сумма и логическое произведение), разумеется, будут иными. Результаты сложения понятий, при сравнении их с результатами умножения, полностью совпадают только в случае равнозначности, частично совпадают в пересечении и совершенно не совпадают в соподчинении, противоположности и противоречии (в этих трех случаях результатом умножения является нулевое или пустое понятие). В отношении подчинения результатом сложения является родовое понятие, а результатом умножения – видовое.

      Как правило, в естественном языке (том, на котором мы общаемся) результат сложения понятий выражается союзом ИЛИ, а умножения – союзом И. В результате сложения понятий школьник и спортсмен образуется новое понятие, в объем которого входит любой человек, если он является ИЛИ школьником, ИЛИ спортсменом, а в результате умножения этих понятий в объем нового понятия входит любой человек, если он является И школьником, И спортсменом одновременно.

      О возможных разночтениях при употреблении союзов ИЛИ и ИВ. И. Свинцов[4] пишет: «Что касается союзов ИЛИ и И, то нужно отметить их многозначность, способную в известных ситуациях создавать достаточно неопределенное представление о характере связи между некоторыми исходными понятиями. Удачна ли, например, следующая формулировка одного из правил пользования городским транспортом: Безбилетный проезд и бесплатный провоз багажа наказываются штрафом! Представим себе два подмножества, которые могут быть выделены СКАЧАТЬ



<p>4</p>

Свинцов В. И. Логика. Элементарный курс для гуманитарных специальностей. – М.: Скорина, 1998. С. 60–61.