Название: История астрономии. Великие открытия с древности до Средневековья
Автор: Джон Дрейер
Издательство: Центрполиграф
Жанр: Физика
isbn: 978-5-9524-5284-8
isbn:
Принцип гомоцентрических сфер, как мы увидим в следующей главе, прекрасно вписывается в космологические идеи Аристотеля и, значит, должен был быть сохранен, поэтому Каллипп, чтобы улучшить систему, вынужден был добавить в нее больше сфер. Он считал теории Юпитера и Сатурна достаточно верными и оставил их нетронутыми, и это показывает нам, что он не осознавал эллиптическое неравенство в движении обеих планет, хотя оно может достигать величины в 5 или 6°. А вот крупные недостатки в теории Марса он постарался исправить, введя для этой планеты пятую сферу, чтобы получить ретроградное движение, не допуская при этом серьезной ошибки в синодическом периоде. Это всего лишь догадка, поскольку никто четко не говорит, почему Каллипп ввел по сфере в теории Марса, Венеры и Меркурия[89], но Скиапарелли показал, что дополнительная сфера может давать ретроградное движение без лишнего увеличения движения по широте. Пусть АОВ представляет эклиптику, причем А и В — противоположные точки на ней, которые проходят круг зодиака за сидерический период Марса. Пусть сфера (третья сфера Евдокса) совершает поворот вокруг этих точек в синодический период планеты, и пусть некоторая точка Р1 на экваторе этой сферы является полюсом четвертой сферы, которая вращается вдвое быстрее третьей в противоположном направлении, унося с собой точку Р2, которая является полюсом пятой сферы, вращающейся в том же направлении и в течение того же периода, что и третья, и уносящей планету в точке Мна ее экваторе. Легко увидеть, что если в начале движения точки Р2 и М расположены в плоскости эклиптики в порядке АР2Р1МВ, то в любой момент времени углы будут такими, как показано на рисунке, и так как АР1 = МР2 = 90°, то планета М за синодический период будет описывать фигуру, симметричную эклиптике, форма которой будет меняться в соответствии с принятой длиной дуги Р1Р2 и, подобно гиппопеде, может производить ретроградное движение. И она имеет то преимущество над гиппопедой, что может дать планете в районе точки О гораздо большую прямую и ретроградную скорость при том же движении СКАЧАТЬ
89
Симпликий всего лишь говорит, что Евдем коротко и ясно изложил причины такого добавления («О небе», с. 497).