Вопрос жизни. Энергия, эволюция и происхождение сложности. Ник Лейн
Чтение книги онлайн.

Читать онлайн книгу Вопрос жизни. Энергия, эволюция и происхождение сложности - Ник Лейн страница 28

СКАЧАТЬ от комплекса III к комплексу IV. Направление потока электронов на кислород показано стрелкой. В ходе транспорта электронов выделяется энергия, за счет которой дыхательные комплексы I, III и IV перебрасывают протоны через мембрану (комплекс II передает электроны, но протоны не перекачивает). На каждую пару электронов, прошедших через ЭТЦ к кислороду, комплексы I и III перекачивают по четыре протона, комплекс IV – два протона. Протоны возвращаются в матрикс через АТФ-синтазу, и за счет выделяющейся энергии происходит синтез АТФ из АДФ и Фн(вправойчастирисунка).

      Но это лишь половина их работы. Вторая половина – синтезировать АТФ, используя накопленную энергию[23]. Внутренняя мембрана митохондрий почти непроницаема для протонов – они могут проходить только через особые динамические каналы, которые, пропустив протон, захлопываются. Протоны крошечные (по сути, это ядра атомов водорода, самого малого из атомов), поэтому удержать их – нелегкая задача. Протоны невероятно быстро перемещаются в водной среде, перепрыгивая с молекулы на молекулу, поэтому митохондриальная мембрана должна быть совершенно непроницаема для воды. Кроме того, протоны заряжены – они несут единичный положительный заряд. Поэтому перекачка протонов через непроницаемую для них мембрану приводит, во-первых, к тому, что возникает разность концентраций протонов между двумя сторонами мембраны. Во-вторых, на мембране появляется разность зарядов, потому что снаружи положительных зарядов становится больше, чем внутри. Иными словами, на мембране возникает разность электрохимических потенциалов в 150–200 милливольт. Из-за того, что мембрана очень тонкая (около 6 нанометров), внутри нее появляется чрезвычайно высокая напряженность электрического поля. Если вы снова уменьшитесь до размера молекулы АТФ и попробуете приблизиться к мембране, то сможете в этом убедиться: напряженность там достигает 30 мегавольт на метр – в тысячу раз выше, чем в бытовой электросети. (Почти как у разряда молнии.)

      Этот огромный электрический потенциал – протон-движущая сила – приводит в движение АТФ-синтазу: поражающую воображение белковую наномашину (рис. 10). АТФ-синтаза – самый настоящий роторный двигатель, в котором поток протонов вращает коленчатый вал, взаимодействующий с каталитической головкой. За счет энергии этого взаимодействия происходит синтез АТФ. АТФ-синтаза похожа на турбину гидроэлектростанции: мембрана, как плотина, сдерживает напор протонов, которым ничего не остается, как хлынуть через турбину, вращая ротор. Это не поэтическое видение, а точное описание. Впрочем, даже оно не передает удивительной сложности белкового двигателя. Например, до сих пор не вполне ясно, как протоны связываются с погруженным в мембрану участком C-кольца; какие электростатические взаимодействия вращают это кольцо (строго в одном направлении); как кольцо сообщает вращение ротору, вызывая конформационные изменения в каталитической головке, а также как двигаются субъединицы этой головки, захватывая молекулы АДФ, Фн СКАЧАТЬ



<p>23</p>

И не только синтезировать АТФ. Протонный градиент – универсальная форма энергии, которая используется для вращения жгутиков бактерий (но не архей – их жгутик устроен иначе), для активного транспорта молекул вовнутрь и наружу клетки, для диссипации (с выделением тепла). Протонный градиент играет центральную роль в жизни клеток и их программируемой смерти – апоптозе.