Название: Как работает Вселенная: Введение в современную космологию
Автор: Сергей Парновский
Издательство: Альпина Диджитал
Жанр: Прочая образовательная литература
isbn: 978-5-9614-5060-6
isbn:
Это было сделано экспедицией сэра Артура Эддингтона, которая измерила положения звезд во время полного солнечного затмения 1919 г. Полное солнечное затмение было необходимо, так как в то время астрономы могли производить наблюдения только в видимом свете, и свет Солнца сделал бы невозможным наблюдения звезд возле его диска. Эддингтон и его коллеги проводили наблюдения в Бразилии и на западном побережье Африки. Сравнив фотографии неба вблизи Солнца во время затмения и той же области неба вдали от Солнца, они измерили угол отклонения, который соответствовал предсказанию Эйнштейна. Эти наблюдения все же были недостаточно точны, но ситуация существенно улучшилось после появления радиотелескопов.
Эффект отклонения света является основой для так называемого гравитационного линзирования, при котором наблюдаются несколько изображений одного и того же объекта. Оно активно изучается и даже используется в качестве инструмента для нестандартного наблюдения чрезвычайно удаленных объектов. Мы обсудим это в подразделе 4.2.7.
1.2.3. Гравитационное красное смещение
Третий эффект называется гравитационным красным смещением[6] и описывает разницу в скорости течения времени в точках с различными гравитационными потенциалами[7]. Грубо говоря, время течет быстрее на верхнем этаже здания, чем в его подвале. Это и является причиной изменения частоты. Пусть источник в подвале передает, скажем, 1000 сигналов в секунду. Они ловятся приемником на крыше, но для приемника секунды имеют другую продолжительность, так что в течение своей секунды он получает не 1000, а, например, 999 сигналов. Другими словами, частота в приемнике смещается относительно частоты источника.
Астрономы наблюдали гравитационное красное смещение в спектрах излучения белых карликов, в частности у Сириуса B, который приблизительно содержит массу Солнца в объеме Земли. В результате гравитационный потенциал на его поверхности значительно превосходит максимальные значения, наблюдаемые в Солнечной системе.
Этот эффект был также продемонстрирован в лабораторных условиях Робертом Паундом и Гленом Ребкой в 1959 г. Они построили свой эксперимент вокруг основополагающей идеи квантовой механики о том, что для возбуждения атома из основного состояния[8] он должен поглотить фотон с точно такой же энергией или длиной волны, какой возбужденный атом излучает при переходе в основное состояние[9]. Если что-то (в нашем случае гравитационное красное смещение) изменит пусть даже совсем незначительно энергию или длину волны фотона, пока тот перемещается от одного атома к другому, то фотон не будет поглощаться. Тем не менее он все еще может быть поглощен, если атом-приемник движется СКАЧАТЬ
6
Красное смещение возникает при увеличении длины волны. Противоположный эффект называется синим смещением. Названия происходят от того, что красный свет имеет более длинные волны, чем синий свет, хотя оба термина применяются к любой области частот электромагнитного излучения, не обязательно видимого света.
7
Гравитационный потенциал – это потенциальная энергия компактного тела в гравитационном поле в пересчете на единицу его массы. Именно эта величина определяет скорость течения времени в слабых гравитационных полях.
8
Основное состояние – состояние атома с минимальной энергией. Любое другое состояние, отличное от основного, называется возбужденным.
9
Этому препятствует энергия отдачи атома, излучающего фотон, но в эксперименте она отсутствовала из-за использования открытого незадолго перед этими опытами эффекта Месбауэра.