● Wasted time due to redevelopment: If you choose the wrong data architecture, you may need to add one band-aid after another to satisfy the data needs. Business intelligence and reporting are all about the end user, but testing with the end users tends to happen at the end of the development cycle. If the end users have a concern with the amount, type, or frequency of the data they are receiving, you will be up a creek without a paddle! Having a solid data architecture up front means that you can prevent finding these issues at the end of a long development cycle.
● Loss of confidence in the solution: A typical symptom of not having a standard data architecture is duplication of information within the system. If a developer does not follow the existing data architecture, he could apply an undesirable band-aid fix. Sometimes this duplication does not result in the same answer, either due to different data in the system or due to user error caused by different access methods. In addition to differing answers, this duplication also causes requests for the information to take longer because end users have to decide which one is the best path. Between different answers and longer query times, the end users soon lose confidence in the system.
● Lack of scalability: Providing the ability to appropriately scale a data architecture is a key component of a desirable end-to-end business intelligence solution. Without this ability, the solution will not keep up with the growing business and return times, and its usefulness will slowly deteriorate.
Benefits
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.