Типичные периоды наблюдаемых колебаний Солнца составляют от нескольких минут до часа.
На распространение акустических волн влияют магнитные поля. Во-первых, они меняют параметры среды, изменяя и скорость звука. Во-вторых, поскольку вещество Солнца ионизовано, колебания среды с магнитным полем могут приводить к возникновению магнитогидродинамических волн. Из-за этого энергия акустических волн переходит в энергию волн магнитогидродинамических. К тому же магнитные поля могут оказывать влияние и на само возникновение волн, а не только на их распространение. Все это позволяет получать данные о магнитных полях в рамках гелиосейсмологических исследований. Правда, зачастую результаты оказываются зависимыми от выбранных моделей.
Кроме того, на колебания влияет вращение Солнца. В результате оказывается возможным определить, как меняется скорость вращения с глубиной на разных широтах. Также удается получать данные о крупномасштабных потоках вещества в недрах Солнца (например, связанных с конвекцией).
Гелиосейсмологические данные играли важную роль в решении проблемы солнечных нейтрино. Именно анализ данных о солнечных колебаниях позволил подтвердить стандартную модель Солнца, показав, что решение проблемы должно быть связано со свойствами нейтрино, а не с неизвестными отклонениями от модели строения звезды.
Разные волны проникают на разную глубину, что позволяет определять условия в недрах Солнца.
Именно гелиосейсмологические данные позволили достаточно точно определить положение так называемой тахолинии – границы между лучистым ядром и конвективной оболочкой. Она залегает на глубине около 0,3 радиуса Солнца. В этом месте резко изменяется значение скорости звука. Видимо, именно эта область играет ключевую роль в работе солнечного динамо – в генерации (усилении) магнитного поля. Вообще же анализ p-мод (мода – тип колебаний) колебаний Солнца позволяет изучать его структуру от самых глубин (0,05 радиуса) до внешних слоев.
Анализ p-мод колебаний позволяет изучать структуру Солнца на глубине от 0,05 до 0,96 радиуса.
Кроме того, гелиосейсмологические данные помогают оценить содержание гелия в конвективной оболочке. Присутствие гелия меняет среднюю молекулярную массу вещества, что, в свою очередь, сказывается на скорости звука. Такие данные весьма важны, поскольку помогают определить начальное содержание гелия в Солнце.
Начиная с запуска спутника SOHO (Solar and Heliospheric Observatory – Солнечная и гелиосферная обсерватория) в 1995 г., основной поток гелиосейсмологических данных получают с СКАЧАТЬ