Естествознание. Александр Петелин
Чтение книги онлайн.

Читать онлайн книгу Естествознание - Александр Петелин страница 9

СКАЧАТЬ к нулю (строгое математическое определение значения мгновенной скорости).

      Если тело движется на отрезке пути s1 в течение времени t1 с одной скоростью, а на отрезке пути s2 в течение времени t2 с другой скоростью, то средняя скорость v на всем пути:

      Постоянное ускорение определяется как

      где v – v0 – приращение скорости за время t.

      Мгновенное ускорение:

      Путь при равноускоренном движении:

      где v0 – скорость тела в начальный момент времени.

      На практике нужно знать не только значение, но и направление скорости в пространстве, например, чтобы описать движение (траекторию) автомобиля, самолета или космического корабля. Любая физическая величина, которая не будет полностью определена, если задать только ее значение и не указать, в какую сторону она направлена, является вектором.

      Скорость – это вектор. Если разложить вектор скорости v при движении тела в пространстве по осям декартовой системы координат, то мы получим ее составляющие vx, v, vz. Они связаны с полной скоростью v соотношением

      Следует отметить, что векторную природу имеет ускорение a, а также многие величины, которые мы будем использовать в дальнейшем изложении: сила F, импульс p и другие. Во всех случаях векторные величины отмечаются стрелкой «->», помещенной над буквенным обозначением величины. Значение самой величины (ее абсолютная величина) обозначается просто буквой, например, a – значение ускорения.

      Рассмотрим равномерное движение тела по окружности со скоростью v. При этом его ускорение, оставаясь перпендикулярным скорости в любой момент времени, направлено к центру окружности. Можно показать, что значение ускорения тела ac, которое в данном случае называется центростремительным, определяется по формуле

      где R – радиус окружности. Следует отметить, что центростремительное ускорение меняет только направление вектора скорости, не влияя на его величину; ускорение ac направлено по радиусу окружности к ее центру.

      Пример. Определение первой космической скорости.

      Любое тело, движущееся по круговой орбите вокруг Земли, должно иметь ускорение ac = v2/R, направленное к центру нашей планеты.

      Поскольку на тело в этом случае действует только сила земного притяжения (т. е. сила тяжести), то можно записать

      где gc – ускорение свободного падения – 9,8 м/с2.

      Тогда vc = qR.

      Если считать, что R≈ 6500 км (расстояние до центра Земли), то вычисление первой космической скорости дает значение vc=8 км/c. Если разделить длину орбиты на скорость спутника, то получим время одного оборота спутника вокруг Земли. Длина орбиты низколетящего спутника близка к длине экватора Земли t = 40 000 км/8 км/c = 5000 c = 83 мин

СКАЧАТЬ