Название: Studies in the Theory of Descent, Volume II
Автор: Weismann August
Издательство: Public Domain
Жанр: Зарубежная классика
isbn:
isbn:
Now if congruence presupposes an equal number of transforming impulses, we perceive that the number of the impulses which have affected larvæ and imagines agree with one another the more closely the larger the systematic groups which are compared together. How can this be otherwise? The larger the systematic group the longer the period of time which must have been necessary for its formation, and the more numerous the transforming impulses which must have acted upon it before its formation was completed.
But if the supposition that the impulse to change always comes from the environment in no way favours the idea that such impulses always affect both stages contemporaneously, and are equal in number during the same period of time, there is not, on the other hand, the least ground for assuming that throughout long periods the larvæ or the imagines only would have been affected by such transforming influences. This could have been inferred from the fact that varieties frequently depend only upon one stage, whilst specific differences in larvæ only also occur occasionally, the imagines remaining alike; but no single genus is known of which all the species possess similar larvæ. Within the period of time during which genera can be formed the transforming impulses therefore never actually affect the one stage only, but always influence both.
But if this is the case – if within the period of time which is sufficient for the production of species, the one stage only is but seldom and quite exceptionally influenced by transforming impulses, whilst both stages are as a rule affected, although not with the same frequency, it must necessarily follow that on the whole, as the period of time increases, the difference in the number of these impulses which affect the larva and of those which affect the imago must continually decrease, and with this difference the magnitude of the morphological differences resulting from the transforming influences must at the same time also diminish. With the number of the successively increasing changes the difference in the magnitude of the change in the two stages would always relatively diminish until it had quite vanished from our perception; just in the same manner as we can distinguish a group of three grains of corn from one composed of six, but not a heap of 103 grains from one containing 106 grains.
That the small systematic groups must have required a short period and the large groups a long period of time for their formation requires no special proof, but results immediately from the theory of descent.
All the foregoing considerations would, however, only hold good if the transforming impulses were equal in strength, or, not to speak figuratively, if the changes only occurred in equivalent portions of the body, i. e. in such portions as those in which the changes are of the same physiological and morphological importance to the whole organism.
Now in the lower systematic groups this is always the case. Varieties, species, and genera are always distinguished by only relatively small differences; deep-seated distinctions do not here occur, as is implied in the conception of these categories. The true cause of this is, I believe, to be found in the circumstance that all changes take place only by the smallest steps, so that greater differences can only arise in the course of longer periods of time, within which a great number of types (species) can, however, come into existence, and these would be related by blood and in form in different degrees, and would therefore form a systematic group of a higher rank.
The short periods necessary for the production of inferior groups, such as genera, would not result in incongruences if only untypical parts of the larvæ, such as marking or spines, underwent change, whilst in the imagines typical parts – wings and legs – became transformed. The changes which could have occurred in the wings, &c., during this period of time would have been much too small to produce any considerable influence on the other parts of the body by correlation; and two species of which the larvæ and imagines, had changed with the same frequency, would show a similar amount of divergence between the larvæ and between the imagines, although on the one side only untypical parts —i. e. those of no importance to the whole organization – and on the other side typical parts, were affected. The number of the changes would here alone determine whether congruence or incongruence occurred between the two stages.
The case would be quite different if, throughout a long period of time, in the one stage only typical and in the other only untypical parts were subjected to change. In the first case a complete transformation of the whole structure would occur, since not only would the typical parts, such as the wings, undergo a much further and increasing transformation in the same direction, but these changes would also lead to secondary alterations.
In this manner, I believe, must be explained the fact that in the higher groups still greater form-divergences of the two stages occur; and if this explanation is correct, the cause of this striking phenomenon, viz., that incongruence diminishes from varieties to genera, in which latter it occurs but exceptionally, whilst in families and in the higher groups it again continually increases, is likewise revealed. Up to genera the incongruence depends entirely upon the one stage having become changed more frequently than the other; but in families and groups of families, and in the orders Diptera and Hymenoptera, as will be shown subsequently, in sub-orders and tribes, it depends upon the importance of the part of the body affected by the predominant change. In the latter case the number of changes is of no importance, because these are so numerous that the difference vanishes from our perception; but an equal number of changes, even when very great, may now produce a much greater or a much smaller transformation in the entire bodily structure according as they affect typical or untypical portions, or according as they keep in the same direction throughout a long period of time, or change their direction frequently.
Those unequal form-divergences which occur in the higher systematic groups a re always associated with a different formation of groups – the larvæ form different systematic groups to the imagines, so that one of these stages constitutes a higher or a lower group; or else the groups are of equal importance in the two stages, but are of unequal magnitude – they do not coincide, but the one overlaps the other.
Incongruences of this last kind appear in certain cases within families (Nymphalidæ), but I will not now subject these to closer analysis, because their causes will appear more clearly when subsequently considering the orders Hymenoptera and Diptera. Incongruences of the first kind, however, admit of a clear explanation in the case of butterflies. They appear most distinctly in the groups composed of families.
Nobody has as yet been able to establish the group Rhopalocera by means of any single character common to the larvæ; nevertheless, this group in the imagines is the sharpest and best defined of the whole order. If we inform the merest tyro that clubbed antennæ are the chief character of the butterflies, he will never hesitate in assigning one of these insects to its correct group. Such a typical character, common to all families, is, however, absent in the larvæ; and it might be correctly said that there were no Rhopalocerous larvæ, or rather that there were only larvæ of Equites, Nymphales, and Heliconii. The larvæ of the various families can be readily separated by means of characteristic distinctions, and it would not be difficult for an adept to distinguish to this extent in single cases a Rhopalocerous caterpillar as such; but these larvæ possess only family characters, and not those of a higher order.
This incongruence partly depends upon the circumstance that the form-divergence between a Rhopalocerous and a Heterocerous family is much greater on the side of the imagines than on that of the larvæ. Were there but a single family of butterflies in existence, such as the Equites, we should be obliged to elevate this to the rank of a sub-order on the side of the imagines, but not on that of the larvæ. Such cases actually occur, and an instance of this kind will be mentioned later in connection with the Diptera. But this alone does not explain why, on the side of the imagines, a whole series of families show the same amount of morphological divergence from the families of other groups. There are two things, therefore, СКАЧАТЬ