Название: Философия. Античные мыслители
Автор: Григорий Гутнер
Издательство: Свято-Филаретовский православно-христианский институт
Жанр: Учебная литература
isbn: 978-5-89100-130-5, 978-5-8291-1883-9
isbn:
Рассмотрим некоторые важные особенности пифагорейской арифметики, опираясь на только что цитированный источник – трактат Никомаха из Герасы. Прежде всего, заметим, что его автор настаивает на неравноправном положении наук, почитая арифметику более значимой, чем все остальные, и даже называя ее «матерью всех наук»[46]. Аргументирует он это тем, что «с ее уничтожением уничтожаются все науки, сама же она не уничтожается вместе с ними». Ни геометрия, ни астрономия, ни музыка не могут изучаться без знания чисел. Числа же, упорядочивая и организуя все остальное, не зависят ни от чего. О числах при этом достигается наиболее ясное знание.
Начнем с классификации чисел. Единица, заметим, числом не является. Она есть начало всякого числа. Числа же, прежде всего, разделяются на четные и нечетные. Первые делятся на два равных, вторые же не могут быть разделены на два.
Четные числа, в свою очередь, разделяются на три вида: четно-четные, четно-нечетные, нечетно-четные. Определения этих видов таковы.
Четно-четные числа, по определению Никомаха, делятся на две равные части так, что получившиеся доли, в свою очередь, делятся пополам и это деление пополам можно продолжать до тех пор, пока не получится единица. Иными словами, речь идет о степенях двойки, т. е. числах 2, 4, 8,16, 32, 64…
Четно-нечетное число таково, что его половины уже не делятся на два. Таковы, например, 6,10,14,18, 22, 30. Этот вид четных чисел Никомах называет противоположным первому.
Наконец третий вид, который Никомах считает средним между двумя противоположностями – нечетно-четные числа – это числа, половины которых делятся пополам, и даже у некоторых половины половин делятся надвое, а у некоторых это деление можно продолжить и далее. Однако, в отличие от четно-четных чисел, это деление невозможно продолжить до единицы. Его конечным итогом всегда будет какое-то нечетное число (напомним, что единицу пифагорейцы числом не считали, а потому не считали ее нечетной). Таковы, например, числа 24, 28, 36, 40, 44.
Далее Никомах описывает свойства каждого из трех видов, чем мы здесь заниматься уже не будем. Заметим, что такая классификация четных чисел для современной математики не очень интересна, тогда как пифагорейцы явно придают ей большое значение. Чем же она важна? Я думаю, что некоторую подсказку мы получим, если посмотрим, как определяет эти виды чисел Евклид.
Четно-четное число есть СКАЧАТЬ
45
46