Название: В поисках кота Шредингера. Квантовая физика и реальность
Автор: Джон Гриббин
Издательство: РИПОЛ Классик
Жанр: Физика
isbn: 978-5-386-09614-4
isbn:
Рис. 4.1. Энергетические уровни в простом атоме вроде атома водорода можно сравнить с набором ступеней, имеющих различную высоту. Мяч, помещаемый на различные ступени, символизирует электрон на различных энергетических уровнях атома. Движению вниз с одного уровня на другой соответствует высвобождение определенного количества энергии, связанной в атоме водорода со спектральными линиями серии Бальмера. Промежуточных линий не существует, поскольку нет промежуточных «ступеней» для электрона.
В 1916 году Эйнштейн завершил работу над своей общей теорией относительности и снова обратился к квантовой теории (в сравнении с его главным трудом это, должно быть, казалось для него отдыхом). Возможно, он был вдохновлен успехом модели атома Бора и тем фактом, что как раз в это время его новая версия корпускулярной теории света наконец-то начала обретать признание. В 1905 году, когда Эйнштейн только опубликовал свою интерпретацию фотоэлектрического эффекта, одним из его главных оппонентов стал американский физик Роберт Эндрюс Милликен. Он десять лет проверял эту идею в серии блестящих опытов, начав их с целью доказать, что Эйнштейн был неправ, и закончив в 1914 году обнаружением прямого экспериментального доказательства того, что объяснение фотоэлектрического эффекта с помощью световых квантов, или фотонов, предложенное Эйнштейном, было верным. В процессе этих экспериментов он опытным путем установил точное значение h ив 1923 году по иронии судьбы получил Нобелевскую премию за свои исследования и измерение заряда электрона.
Эйнштейн понял, что переход атома из «возбужденного» энергетического состояния – с электроном на высоком энергетическом уровне – в состояние с меньшей энергией во многом сходен с радиоактивным распадом атома. Он использовал статистические методы, развитые Больцманом (для оперирования с поведением групп атомов), чтобы исследовать индивидуальные энергетические состояния, рассчитывая вероятность того, что определенный атом окажется в энергетическом состоянии, соответствующем определенному квантовому числу n. Он использовал вероятностные «актуарные таблицы» радиоактивности, чтобы выяснить вероятность «распада» атома из состояния n в другое состояние с меньшей энергией (то есть с меньшим квантовым числом). Все это ясным и простым путем привело к формуле Планка для излучения абсолютно черного тела, полученной всецело на основании квантовых идей. Вскоре, используя статистические идеи Эйнштейна, Бор сумел расширить свою модель атома, включив в нее объяснение большей четкости одних линий по сравнению с другими: так происходило из-за того, что некоторые переходы между энергетическими состояниями были более вероятны – могли случиться скорее, чем другие. Он не мог объяснить, почему СКАЧАТЬ