Вероятность как форма научного мышления. Виктор Лёвин
Чтение книги онлайн.

Читать онлайн книгу Вероятность как форма научного мышления - Виктор Лёвин страница 5

СКАЧАТЬ Именно этот факт, по Мизесу, должен привести к мысли о сходимости относительных частот, точнее к тому, что предел относительной частоты возможен.[13]

      Правило иррегулярности Мизес определял следующим образом: предельное значение относительной частоты, с которым выступает в коллективе какой-либо признак, должно оставаться неизменным, если из всей последовательности произвольно выбрать любую часть и рассматривать в дальнейшем только эту часть. При этом, выбранная частичная последовательность должна быть безграничной, как и сама основная последовательность. То есть, любой признак в любой части коллектива должен иметь ту же самую долю, что и во всем коллективе.[14]

      В дискуссии, развернувшейся вокруг понятия коллектива, отмечались трудности как математического, так и принципиального характера. Например, доказывалось, что математика не знает последовательностей, обладающих теми свойствами, которыми наделяет свои коллективы Мизес. В частности, было сказано, что требование предела относительных частот находится в противоречии с требованием правила иррегулярности. Аргументы в этом случае таковы: Понятие предела связано с бесконечной последовательностью, которая не может быть задана актуально вследствие того, что такое задание должно производиться через общий закон образования ее членов по нумерическому признаку. Но это-то и запрещается правилом иррегулярности. В то же время из математики хорошо известно, что только в таком случае можно вести речь о строгом математическом пределе[15] В другом месте читаем: «…самое понятие предела в его обычном понимании применимо лишь к индивидуальной, закономерно определенной последовательности. Там, где закономерностей, определяющих данную последовательность, нет и принципиально быть не может, нельзя даже ставить вопроса о существовании или несуществовании предела».[16]

      Позже Мизес предлагал раскрыть коллектив не как актуальную, а становящуюся последовательность. Но, с математической точки зрения, у такой последовательности также не может быть предела.

      В последних своих работах Мизес попытался уточнить определение иррегулярности, объявляя ее уже нечувствительностью не к любому закону выбора, а по отношению к счетному множеству законов, сформулированных в рамках определенной формализованной логики. Ибо, в реальной ситуации речь всегда идет о некотором конечном числе операций выбора. За пределами этой формализованной системы оказывается возможным задать явно случайную последовательность обладающую свойством коллектива, по крайней мере, в принципе.[17] На возможность задания случайных последовательностей указывал также А. Г. Постников.[18]

      Но главная трудность концепции Мизеса состояла в невозможности на ее основе делать определенные предсказания о течении реальных процессов. И указанное выше уточнение не снимает этой трудности, поскольку не затрагивает понятия предела. СКАЧАТЬ



<p>13</p>

Мизес Р. Вероятность и статистика. М-Л, 1930, с. 17–18.

<p>14</p>

Мизес Р. Вероятность и статистика. М-Л, 1930, с.31.

<p>15</p>

Weismann F. Logische Analyse des Wahrscheinlichkeitsbegrifs. – “Erkenntnis”, I, 1930/31, s.231–232.

<p>16</p>

Хинчин А. Я. Частотная теория Р. Мизеса и современные идеи теории вероятностей. – «Вопросы философии», 1961, № 1, с.79.

<p>17</p>

Алешин А. И. и Метлов В. И. Характеристика основных подходов к определению понятия вероятность. – Уч. зап. Горьковского университета. Вып.96. Горький, 1969.

<p>18</p>

Постников А. Г. Арифметическое моделирование случайных процессов. – Труды Мат. ин-та им. В. А. Стеклова, т.57, 1960.